Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 8(1): 4440, 2018 03 13.
Article in English | MEDLINE | ID: mdl-29535401

ABSTRACT

It is a longstanding observation that the frequency of volcanism periodically changes at times of global climate change. The existence of causal links between volcanism and Earth's climate remains highly controversial, partly because most related studies only cover one glacial cycle. Longer records are available from marine sediment profiles in which the distribution of tephras records frequency changes of explosive arc volcanism with high resolution and time precision. Here we show that tephras of IODP Hole U1437B (northwest Pacific) record a cyclicity of explosive volcanism within the last 1.1 Myr. A spectral analysis of the dataset yields a statistically significant spectral peak at the ~100 kyr period, which dominates the global climate cycles since the Middle Pleistocene. A time-domain analysis of the entire eruption and δ18O record of benthic foraminifera as climate/sea level proxy shows that volcanism peaks after the glacial maximum and ∼13 ± 2 kyr before the δ18O minimum right at the glacial/interglacial transition. The correlation is especially good for the last 0.7 Myr. For the period 0.7-1.1 Ma, during the Middle Pleistocene Transition (MPT), the correlation is weaker, since the 100 kyr periodicity in the δ18O record diminishes, while the tephra record maintains its strong 100 kyr periodicity.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 72(4 Pt 1): 041301, 2005 Oct.
Article in English | MEDLINE | ID: mdl-16383367

ABSTRACT

The first detailed quantitative observations of the two-dimensional collapse of a granular column along a horizontal channel are presented for a variety of materials. Together with the complementary study for the axisymmetric situation, we conclude that for granular collapses the generally accepted approaches, that are highly dependent on frictional parameters, do not describe the main flow phenomena. The motion divides in two main flow regimes at a approximately 1.8, where the aspect ratio a = hi/di and hi and di are the initial height and width of the column. We describe the details of collapse by emphasizing the sequential occurrence of a main spreading followed by a final avalanching phase. For the low a regime, a < 1.8, we derive descriptions of the final geometry by direct physical arguments. For the large a regime, a > 1.8, we determine that nearly all details of the collapse, including the position of the flow front as a function of time, the emplacement time, the self-similar final profiles, and especially their maximum vertical and horizontal extension, are established during the spreading phase and can be expressed in terms of the initial geometrical parameters but are independent of basal and internal friction parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...