Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(17)2021 Apr.
Article in English | MEDLINE | ID: mdl-33883132

ABSTRACT

Harvesting floodwaters to recharge depleted groundwater aquifers can simultaneously reduce flood and drought risks and enhance groundwater sustainability. However, deployment of this multibeneficial adaptation option is fundamentally constrained by how much water is available for recharge (WAFR) at present and under future climate change. Here, we develop a climate-informed and policy-relevant framework to quantify WAFR, its uncertainty, and associated policy actions. Despite robust and widespread increases in future projected WAFR in our case study of California (for 56/80% of subbasins in 2070-2099 under RCP4.5/RCP8.5), strong nonlinear interactions between diversion infrastructure and policy uncertainties constrain how much WAFR can be captured. To tap future elevated recharge potential through infrastructure expansion under deep uncertainties, we outline a novel robustness-based policy typology to identify priority areas of investment needs. Our WAFR analysis can inform effective investment decisions to adapt to future climate-fueled drought and flood risk over depleted aquifers, in California and beyond.

2.
Water Res ; 134: 234-252, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29427965

ABSTRACT

Planning of water reuse systems is a complex endeavor. We have developed a software toolkit, IRIPT (Integrated Urban Reclaimed Water Infrastructure Planning Toolkit) that facilitates planning and design of reclaimed water infrastructure for both centralized and hybrid configurations that incorporate satellite treatment plants (STPs). The toolkit includes a Pipeline Designer (PRODOT) that optimizes routing and sizing of pipelines for wastewater capture and reclaimed water distribution, a Selector (SelWTP) that assembles and optimizes wastewater treatment trains, and a Calculator (CalcBenefit) that estimates fees, revenues, and subsidies of alternative designs. For hybrid configurations, a Locator (LocSTP) optimizes siting of STPs and associated wastewater diversions by identifying manhole locations where the flowrates are sufficient to ensure that wastewater extracted and treated at an adjacent STP can generate the revenue needed to pay for treatment and delivery to customers. Practical local constraints are also applied to screen and identify STP locations. Once suitable sites are selected, System Integrator (ToolIntegrator) identifies a set of centralized and hybrid configurations that: (1) maximize reclaimed water supply, (2) maximize reclaimed water supply while also ensuring a financial benefit for the system, and (3) maximize the net financial benefit for the system. The resulting configurations are then evaluated by an Analyst (SANNA) that uses monetary and non-monetary criteria, with weights assigned to appropriate metrics by a decision-maker, to identify a preferred configuration. To illustrate the structure, assumptions, and use of IRIPT, we apply it to a case study for the city of Golden, CO. The criteria weightings provided by a local decision-maker lead to a preference for a centralized configuration in this case. The Golden case study demonstrates that IRIPT can efficiently analyze centralized and hybrid water reuse configurations and rank them according to decision-makers' preferences.


Subject(s)
Conservation of Natural Resources/methods , Decision Support Techniques , Recycling/methods , Water Supply , City Planning , Decision Making , Humans , Software , Waste Disposal, Fluid/methods , Wastewater
3.
Environ Sci Technol ; 47(19): 10762-70, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-23930682

ABSTRACT

Wastewater treatment to recover water, energy, and other resources is largely carried out at centralized treatment facilities. An alternative is local treatment at satellite facilities where wastewater is removed from a collection system, resources are recovered locally, and the residuals are returned to the collection system. Satellite systems decrease the pipe and energy required for delivery of treated water and may decrease cost. But decisions regarding the geographic scale of resource recovery require consideration of many criteria. In this study, we rank water and energy recovery options for a simplified test case at three scale configurations: a centralized configuration and two hybrid configurations. We first choose criteria for decision-making. Quantitative performance metrics are defined for each criterion, weighted, and computed for each configuration. We then rank configurations. Rankings depend upon the decision-making strategy. For our test case, though, several strategies yield the same top-ranked configuration: a hybrid where communities close to the centralized facility use centralized resource recovery; communities far from the centralized facility use satellite resource recovery. Our ranking is sensitive to initial investment cost for satellite treatment. The results underscore the importance of cost-effective treatment systems and of an accurate and comprehensive analysis of design components.


Subject(s)
Conservation of Natural Resources , Waste Disposal, Fluid/methods , California , Decision Making , Decision Support Techniques , Wastewater
4.
Ground Water ; 46(5): 688-94, 2008.
Article in English | MEDLINE | ID: mdl-18624695

ABSTRACT

One approach for simulating ground water-lake interactions is to incorporate the lake into the ground water solution domain as a high-conductivity region. Previous studies have developed this approach using fully saturated models. This study extends this approach to variably saturated models, so that ground water-lake interactions may be more easily simulated with commonly used or public domain variably saturated codes that do not explicitly support coupled lake-water balance modeling. General guidelines are developed for the choices of saturated hydraulic conductivity and moisture retention and relative permeability curves for the lake region. When applied to an example ground water-lake system, model results are very similar to those from a model in which the lake is represented as a specified head boundary continuously updated by a lake mass balance. The high-conductivity region approach is most suitable for relatively simple geometries and lakes with slower and smaller fluctuations when the overall flow pattern and system fluxes, rather than the detailed flow pattern around the intersection of the lake and land surfaces, are of interest.


Subject(s)
Models, Theoretical , Water Movements , Water Supply/analysis , Fresh Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...