Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Resour Announc ; 10(19)2021 May 13.
Article in English | MEDLINE | ID: mdl-33986073

ABSTRACT

Here, we describe genome sequences of 17 Pseudomonas aeruginosa phages, including therapeutic candidates. They belong to the families Myoviridae, Podoviridae, and Siphoviridae and six different genera. The genomes ranged in size from 42,788 to 88,805 bp, with G+C contents of 52.5% to 64.3% and numbers of coding sequences from 58 to 179.

2.
Pharmaceuticals (Basel) ; 14(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668899

ABSTRACT

Multidrug-resistant (MDR) Pseudomonas aeruginosa infections pose a serious health threat. Bacteriophage-antibiotic combination therapy is a promising candidate for combating these infections. A 5-phage P. aeruginosa cocktail, PAM2H, was tested in combination with antibiotics (ceftazidime, ciprofloxacin, gentamicin, meropenem) to determine if PAM2H enhances antibiotic activity. Combination treatment in vitro resulted in a significant increase in susceptibility of MDR strains to antibiotics. Treatment with ceftazidime (CAZ), meropenem, gentamicin, or ciprofloxacin in the presence of the phage increased the number of P. aeruginosa strains susceptible to these antibiotics by 63%, 56%, 31%, and 81%, respectively. Additionally, in a mouse dorsal wound model, seven of eight mice treated with a combination of CAZ and PAM2H for three days had no detectable bacteria remaining in their wounds on day 4, while all mice treated with CAZ or PAM2H alone had ~107 colony forming units (CFU) remaining in their wounds. P. aeruginosa recovered from mouse wounds post-treatment showed decreased virulence in a wax worm model, and DNA sequencing indicated that the combination treatment prevented mutations in genes encoding known phage receptors. Treatment with PAM2H in combination with antibiotics resulted in the re-sensitization of P. aeruginosa to antibiotics in vitro and a synergistic reduction in bacterial burden in vivo.

3.
Microbiol Resour Announc ; 9(29)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32675185

ABSTRACT

We report the genome sequences of 10 Pseudomonas aeruginosa phages studied for their potential for formulation of a therapeutic cocktail; they represent the families Myoviridae, Podoviridae, and Siphoviridae Genome sizes ranged from 43,299 to 88,728 nucleotides, with G+C contents of 52.1% to 62.2%. The genomes contained 68 to 168 coding sequences.

4.
Viruses ; 10(11)2018 11 08.
Article in English | MEDLINE | ID: mdl-30413044

ABSTRACT

A potential concern with bacteriophage (phage) therapeutics is a host-versus-phage response in which the immune system may neutralize or destroy phage particles and thus impair therapeutic efficacy, or a strong inflammatory response to repeated phage exposure might endanger the patient. Current literature is discrepant with regard to the nature and magnitude of innate and adaptive immune response to phages. The purpose of this work was to study the potential effects of Staphylococcus aureus phage K on the activation of human monocyte-derived dendritic cells. Since phage K acquired from ATCC was isolated around 90 years ago, we first tested its activity against a panel of 36 diverse S. aureus clinical isolates from military patients and found that it was lytic against 30/36 (83%) of strains. Human monocyte-derived dendritic cells were used to test for an in vitro phage-specific inflammatory response. Repeated experiments demonstrated that phage K had little impact on the expression of pro- and anti-inflammatory cytokines, or on MHC-I/II and CD80/CD86 protein expression. Given that dendritic cells are potent antigen-presenting cells and messengers between the innate and the adaptive immune systems, our results suggest that phage K does not independently affect cellular immunity or has a very limited impact on it.


Subject(s)
Cytokines/genetics , Dendritic Cells/metabolism , Dendritic Cells/microbiology , Dendritic Cells/virology , Gene Expression , Staphylococcus Phages/physiology , Staphylococcus aureus/virology , Cytokines/metabolism , Dendritic Cells/immunology , Host Specificity , Humans , Monocytes/immunology , Monocytes/metabolism , Monocytes/virology , Phage Therapy , Staphylococcal Infections/microbiology , Staphylococcal Infections/therapy , Staphylococcus Phages/isolation & purification , Virus Replication
5.
Eur J Immunol ; 40(1): 124-33, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19830730

ABSTRACT

Synthetic peptides encoding protective pathogen-derived epitopes represent--in principle--an ideal approach to T-cell vaccination. Empirically, however, these strategies have not been successful. In the current study, we profiled the early activation of CD8+ T cells by MHC class I-restricted peptide immunization to better understand the biology of this response. We found that CD8+ T cells proliferated robustly in response to low doses of short synthetic peptides in PBS, but failed to acquire effector function or form memory populations in the absence of the TLR ligand CpG. CpG was unique among TLR ligands in its ability to enhance the response to peptide and its adjuvant effects had strict temporal requirements. Interestingly, CpG treatment modulated T-cell expression of the surface receptors PD-1 and CD25, providing insight into its possible adjuvant mechanism. The effects of CpG on peptide immunization were dramatically enhanced in the absence of B cells, demonstrating a unique system of regulation of T-cell responses by these lymphocytes. The results reported here provide insight into the complex response to a simple vaccination regimen, as well as a framework for a rational peptide-based vaccine design to both exploit and overcome targeted aspects of the immune response.


Subject(s)
B-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , CpG Islands , Histocompatibility Antigens Class I/immunology , Animals , CD8-Positive T-Lymphocytes/cytology , Cell Proliferation , Female , Immunization , Lymphocyte Activation , Mice , Mice, Inbred BALB C , Peptides/immunology
6.
Infect Immun ; 75(2): 838-45, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17101665

ABSTRACT

Liver-stage antigen 1 (LSA1) is expressed by Plasmodium falciparum only during the intrahepatic cell stage of the parasite's development. Immunoepidemiological studies in regions where malaria is endemic suggested an association between the level of LSA1-specific humoral and cell-mediated immune responses and susceptibility to clinical malaria. A recombinant LSA1 protein, FMP011, has been manufactured as a preerythrocytic vaccine to induce an immune response that would have the effect of controlling parasitemia and disease in humans. To evaluate the immunogenicity of FMP011, we analyzed the immune response of three inbred strains of mice to antigen immunization using two different adjuvant formulations, AS01B and AS02A. We report here the ability of BALB/c and A/J mice, but not C57BL/6J mice, to mount FMP011-specific humoral (antibody titer) and cellular (gamma interferon [IFN-gamma] production) responses following immunization with FMP011 formulated in AS01B or AS02A. Immunization of BALB/c and A/J mice with FMP011/AS01B induced more antigen-specific IFN-gamma-producing splenocytes than immunization with FMP011/AS02A. A slightly higher titer of antibody was induced using AS02A than AS01B in both strains. C57BL/6J mice did not respond with any detectable FMP011-specific IFN-gamma splenocytes or antibody when immunized with FMP011 in AS01B or AS02A. Intracellular staining of cells isolated from FMP011/AS01B-immunized BALB/c mice indicated that CD4(+) cells, but not CD8(+) cells, were the main IFN-gamma-producing splenocyte. However, inclusion of blocking anti-CD4(+) antibody during the in vitro restimulation ELISpot analysis failed to completely abolish IFN-gamma production, indicating that while CD4(+) T cells were the major source of IFN-gamma, other cell types also were involved.


Subject(s)
Adjuvants, Immunologic , Antigens, Protozoan/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Animals , Antibodies, Protozoan/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Female , Interferon-gamma/biosynthesis , Lymphocyte Subsets/immunology , Mice , Mice, Inbred A , Mice, Inbred BALB C , Mice, Inbred C57BL , Vaccines, Subunit/immunology , Vaccines, Synthetic/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...