Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Development ; 149(8)2022 04 15.
Article in English | MEDLINE | ID: mdl-35438172

ABSTRACT

Hofbauer cells (HBCs) are tissue macrophages of the placenta thought to be important for fetoplacental vascular development and innate immune protection. The developmental origins of HBCs remain unresolved and could implicate functional diversity of HBCs in placenta development and disease. In this study, we used flow cytometry and paternally inherited reporters to phenotype placenta macrophages and to identify fetal-derived HBCs and placenta-associated maternal macrophages in the mouse. In vivo pulse-labeling traced the ontogeny of HBCs from yolk sac-derived erythro-myeloid progenitors, with a minor contribution from fetal hematopoietic stem cells later on. Single-cell RNA-sequencing revealed transcriptional similarities between placenta macrophages and erythro-myeloid progenitor-derived fetal liver macrophages and microglia. As with other fetal tissue macrophages, HBCs were dependent on the transcription factor Pu.1, the loss-of-function of which in embryos disrupted fetoplacental labyrinth morphology, supporting a role for HBC in labyrinth angiogenesis and/or remodeling. HBC were also sensitive to Pu.1 (Spi1) haploinsufficiency, which caused an initial deficiency in the numbers of macrophages in the early mouse placenta. These results provide groundwork for future investigation into the relationship between HBC ontogeny and function in placenta pathophysiology.


Subject(s)
Macrophages , Placenta , Animals , Female , Hematopoietic Stem Cells , Mice , Myeloid Progenitor Cells , Pregnancy , Yolk Sac
2.
DNA Repair (Amst) ; 108: 103227, 2021 12.
Article in English | MEDLINE | ID: mdl-34601382

ABSTRACT

RAD51 paralogs are key components of the homologous recombination (HR) machinery. Mouse mutants have been reported for four of the canonical RAD51 paralogs, and each of these mutants exhibits embryonic lethality, although at different gestational stages. However, the phenotype of mice deficient in the fifth RAD51 paralog, XRCC3, has not been reported. Here we report that Xrcc3 knockout mice exhibit midgestational lethality, with mild phenotypes beginning at about E8.25 but severe developmental abnormalities evident by E9.0-9.5. The most obvious phenotypes are small size and a failure of the embryo to turn to a fetal position. A knockin mutation at a key ATPase residue in the Walker A box results in embryonic lethality at a similar stage. Death of knockout mice can be delayed a few days for some embryos by homozygous or heterozygous Trp53 mutation, in keeping with an important role for XRCC3 in promoting genome integrity. Given that XRCC3 is a unique member of one of two RAD51 paralog complexes with RAD51C, these results demonstrate that both RAD51 paralog complexes are required for mouse development.


Subject(s)
DNA-Binding Proteins , Homologous Recombination , Rad51 Recombinase , Adenosine Triphosphatases/genetics , Animals , DNA-Binding Proteins/genetics , Female , Mice , Pregnancy , Rad51 Recombinase/genetics
3.
Immunity ; 54(7): 1433-1446.e5, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34062116

ABSTRACT

The extra-embryonic yolk sac contains the first definitive multipotent hematopoietic cells, denominated erythromyeloid progenitors. They originate in situ prior to the emergence of hematopoietic stem cells and give rise to erythroid, monocytes, granulocytes, mast cells and macrophages, the latter in a Myb transcription factor-independent manner. We uncovered here the heterogeneity of yolk sac erythromyeloid progenitors, at the single cell level, and discriminated multipotent from committed progenitors, prior to fetal liver colonization. We identified two temporally distinct megakaryocyte differentiation pathways. The first occurs in the yolk sac, bypasses intermediate bipotent megakaryocyte-erythroid progenitors and, similar to the differentiation of macrophages, is Myb-independent. By contrast, the second originates later, from Myb-dependent bipotent progenitors expressing Csf2rb and colonize the fetal liver, where they give rise to megakaryocytes and to large numbers of erythrocytes. Understanding megakaryocyte development is crucial as they play key functions during vascular development, in particular in separating blood and lymphatic networks.


Subject(s)
Cell Differentiation/physiology , Erythrocytes/cytology , Megakaryocytes/cytology , Myeloid Cells/cytology , Stem Cells/cytology , Yolk Sac/cytology , Animals , Cell Lineage/physiology , Cells, Cultured , Embryo, Mammalian/cytology , Female , Granulocytes/cytology , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Monocytes/cytology , Multipotent Stem Cells/cytology , Pregnancy
4.
J Exp Med ; 218(4)2021 04 05.
Article in English | MEDLINE | ID: mdl-33566111

ABSTRACT

In the embryo, the first hematopoietic cells derive from the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. We used three lineage-tracing mouse models to show that, contrary to what was previously assumed, hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac erythromyeloid progenitors, which generate tissue resident macrophages, identified highly proliferative erythroid progenitors that rapidly differentiate after intra-embryonic injection, persisting as the major contributors to the embryonic erythroid compartment. We show that erythrocyte progenitors of yolk sac origin require 10-fold lower concentrations of erythropoietin than their hematopoietic stem cell-derived counterparts for efficient erythrocyte production. We propose that, in a low erythropoietin environment in the fetal liver, yolk sac-derived erythrocyte progenitors efficiently outcompete hematopoietic stem cell progeny, which fails to generate megakaryocyte and erythrocyte progenitors.


Subject(s)
Embryonic Development/genetics , Erythrocytes/metabolism , Erythropoiesis , Megakaryocyte Progenitor Cells/metabolism , Yolk Sac/physiology , Animals , Cell Lineage/genetics , Erythropoietin/metabolism , Female , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Proto-Oncogene Proteins c-myb/deficiency , Proto-Oncogene Proteins c-myb/genetics
5.
Blood ; 137(8): 1024-1036, 2021 02 25.
Article in English | MEDLINE | ID: mdl-33025012

ABSTRACT

During embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave, and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here, we show that the first wave of thymic progenitors comprises a unique population of bipotent T and innatel lymphoid cells (T/ILC), generating a lymphoid tissue inducer cells (LTi's), in addition to invariant Vγ5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and, more precisely, the LTi-associated transcripts were expressed in the first, but not in the second, wave of thymic progenitors. Depletion of early thymic progenitors in a temporally controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator-expressing medullary thymic epithelial cells (mTECs). We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid-associated transcripts in yolk sac (YS) erythromyeloid-restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system.


Subject(s)
Lymphoid Progenitor Cells/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Thymus Gland/embryology , Animals , Cells, Cultured , Female , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcriptome
6.
Cell Rep ; 20(9): 2116-2130, 2017 Aug 29.
Article in English | MEDLINE | ID: mdl-28854362

ABSTRACT

Apela (also known as Elabela, Ende, and Toddler) is a small signaling peptide that activates the G-protein-coupled receptor Aplnr to stimulate cell migration during zebrafish gastrulation. Here, using CRISPR/Cas9 to generate a null, reporter-expressing allele, we study the role of Apela in the developing mouse embryo. We found that loss of Apela results in low-penetrance cardiovascular defects that manifest after the onset of circulation. Three-dimensional micro-computed tomography revealed a higher penetrance of vascular remodeling defects, from which some mutants recover, and identified extraembryonic anomalies as the earliest morphological distinction in Apela mutant embryos. Transcriptomics at late gastrulation identified aberrant upregulation of erythroid and myeloid markers in mutant embryos prior to the appearance of physical malformations. Double-mutant analyses showed that loss of Apela signaling impacts early Aplnr-expressing mesodermal populations independently of the alternative ligand Apelin, leading to lethal cardiac defects in some Apela null embryos.


Subject(s)
Carrier Proteins/metabolism , Embryo Loss/genetics , Embryo Loss/pathology , Mesoderm/embryology , Mesoderm/metabolism , Penetrance , Peptides/metabolism , Amino Acid Sequence , Animals , Apelin/metabolism , Apelin Receptors/metabolism , CD11b Antigen/metabolism , Carrier Proteins/chemistry , Embryo, Mammalian/abnormalities , Embryo, Mammalian/pathology , Embryonic Development , Endothelial Cells/metabolism , Erythroid Cells/metabolism , Gene Expression Regulation, Developmental , Mice, Knockout , Mutation/genetics , Myeloid Cells/metabolism , Myocardium/pathology , Peptide Hormones , Peptides/chemistry , Phenotype , Signal Transduction , Survival Analysis , Up-Regulation/genetics , Vascular Remodeling
7.
BMC Dev Biol ; 15: 38, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26498761

ABSTRACT

BACKGROUND: The GATA-binding factor 6 (Gata6) gene encodes a zinc finger transcription factor that often functions as a key regulator of lineage specification during development. It is the earliest known marker of the primitive endoderm lineage in the mammalian blastocyst. During gastrulation, GATA6 is expressed in early cardiac mesoderm and definitive endoderm progenitors, and is necessary for development of specific mesoderm and endoderm-derived organs including the heart, liver, and pancreas. Furthermore, reactivation or silencing of the Gata6 locus has been associated with certain types of cancer affecting endodermal organs. RESULTS: We have generated a Gata6(H2B-Venus) knock-in reporter mouse allele for the purpose of labeling GATA6-expressing cells with a bright nuclear-localized fluorescent marker that is suitable for live imaging at single-cell resolution. CONCLUSIONS: Expression of the Venus reporter was characterized starting from embryonic stem (ES) cells, through mouse embryos and adult animals. The Venus reporter was not expressed in ES cells, but was activated upon endoderm differentiation. Gata6(H2B-Venus/H2B-Venus) homozygous embryos did not express GATA6 protein and failed to specify the primitive endoderm in the blastocyst. However, null blastocysts continued to express high levels of Venus in the absence of GATA6 protein, suggesting that early Gata6 transcription is independent of GATA6 protein expression. At early post-implantation stages of embryonic development, there was a strong correlation of Venus with endogenous GATA6 protein in endoderm and mesoderm progenitors, then later in the heart, midgut, and hindgut. However, there were discrepancies in reporter versus endogenous protein expression in certain cells, such as the body wall and endocardium. During organogenesis, detection of Venus in specific organs recapitulated known sites of endogenous GATA6 expression, such as in the lung bud epithelium, liver, pancreas, gall bladder, stomach epithelium, and vascular endothelium. In adults, Venus was observed in the lungs, pancreas, liver, gall bladder, ovaries, uterus, bladder, skin, adrenal glands, small intestine and corpus region of the stomach. Overall, Venus fluorescent protein under regulatory control of the Gata6 locus was expressed at levels that were easily visualized directly and could endure live and time-lapse imaging techniques. Venus is co-expressed with endogenous GATA6 throughout development to adulthood, and should provide an invaluable tool for examining the status of the Gata6 locus during development, as well as its silencing or reactivation in cancer or other disease states.


Subject(s)
GATA6 Transcription Factor/genetics , Genetic Techniques , Mice/genetics , Single-Cell Analysis , Animals , Embryo, Mammalian/metabolism , GATA6 Transcription Factor/metabolism , Genes, Reporter , Mice/embryology , Mice, Knockout
8.
BMC Dev Biol ; 13: 33, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23971992

ABSTRACT

BACKGROUND: Velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS) is caused by a 1.5-3 Mb microdeletion of chromosome 22q11.2, frequently referred to as 22q11.2 deletion syndrome (22q11DS). This region includes TBX1, a T-box transcription factor gene that contributes to the etiology of 22q11DS. The requirement for TBX1 in mammalian development is dosage-sensitive, such that loss-of-function (LOF) and gain-of-function (GOF) of TBX1 in both mice and humans results in disease relevant congenital malformations. RESULTS: To further gain insight into the role of Tbx1 in development, we have targeted the Rosa26 locus to generate a new GOF mouse model in which a Tbx1-GFP fusion protein is expressed conditionally using the Cre/LoxP system. Tbx1-GFP expression is driven by the endogenous Rosa26 promoter resulting in ectopic and persistent expression. Tbx1 is pivotal for proper ear and heart development; ectopic activation of Tbx1-GFP in the otic vesicle by Pax2-Cre and Foxg1-Cre represses neurogenesis and produces morphological defects of the inner ear. Overexpression of a single copy of Tbx1-GFP using Tbx1Cre/+ was viable, while overexpression of both copies resulted in neonatal lethality with cardiac outflow tract defects. We have partially rescued inner ear and heart anomalies in Tbx1Cre/- null embryos by expression of Tbx1-GFP. CONCLUSIONS: We have generated a new mouse model to conditionally overexpress a GFP-tagged Tbx1 protein in vivo. This provides a useful tool to investigate in vivo direct downstream targets and protein binding partners of Tbx1.


Subject(s)
Ear/embryology , Heart/embryology , Models, Animal , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , Animals , Ear/pathology , Embryo, Mammalian , Gene Dosage , Green Fluorescent Proteins/metabolism , Mice , RNA, Untranslated/genetics , Recombinant Fusion Proteins/metabolism
9.
Development ; 138(24): 5403-14, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22110056

ABSTRACT

The inner ear and cochleovestibular ganglion (CVG) derive from a specialized region of head ectoderm termed the otic placode. During embryogenesis, the otic placode invaginates into the head to form the otic vesicle (OV), the primordium of the inner ear and CVG. Non-autonomous cell signaling from the hindbrain to the OV is required for inner ear morphogenesis and neurogenesis. In this study, we show that neuroepithelial cells (NECs), including neural crest cells (NCCs), can contribute directly to the OV from the neural tube. Using Wnt1-Cre, Pax3(Cre/+) and Hoxb1(Cre/+) mice to label and fate map cranial NEC lineages, we have demonstrated that cells from the neural tube incorporate into the otic epithelium after otic placode induction has occurred. Pax3(Cre/+) labeled a more extensive population of NEC derivatives in the OV than did Wnt1-Cre. NEC derivatives constitute a significant population of the OV and, moreover, are regionalized specifically to proneurosensory domains. Descendents of Pax3(Cre/+) and Wnt1-Cre labeled cells are localized within sensory epithelia of the saccule, utricle and cochlea throughout development and into adulthood, where they differentiate into hair cells and supporting cells. Some NEC derivatives give rise to neuroblasts in the OV and CVG, in addition to their known contribution to glial cells. This study defines a dual cellular origin of the inner ear from sensory placode ectoderm and NECs, and changes the current paradigm of inner ear neurosensory development.


Subject(s)
Ear, Inner/embryology , Animals , Ear, Inner/innervation , Homeodomain Proteins/metabolism , Mice , Neural Crest/embryology , Neural Tube/embryology , Neuroepithelial Cells/cytology , Neurogenesis , PAX3 Transcription Factor , Paired Box Transcription Factors/metabolism , Wnt1 Protein/metabolism
10.
BMC Genomics ; 12: 71, 2011 Jan 26.
Article in English | MEDLINE | ID: mdl-21269513

ABSTRACT

BACKGROUND: Segmental duplications (SDs) on 22q11.2 (LCR22), serve as substrates for meiotic non-allelic homologous recombination (NAHR) events resulting in several clinically significant genomic disorders. RESULTS: To understand the duplication activity leading to the complicated SD structure of this region, we have applied the A-Bruijn graph algorithm to decompose the 22q11.2 SDs to 523 fundamental duplication sequences, termed subunits. Cross-species syntenic analysis of primate genomes demonstrates that many of these LCR22 subunits emerged very recently, especially those implicated in human genomic disorders. Some subunits have expanded more actively than others, and young Alu SINEs, are associated much more frequently with duplicated sequences that have undergone active expansion, confirming their role in mediating recombination events. Many copy number variations (CNVs) exist on 22q11.2, some flanked by SDs. Interestingly, two chromosome breakpoints for 13 CNVs (mean length 65 kb) are located in paralogous subunits, providing direct evidence that SD subunits could contribute to CNV formation. Sequence analysis of PACs or BACs identified extra CNVs, specifically, 10 insertions and 18 deletions within 22q11.2; four were more than 10 kb in size and most contained young AluYs at their breakpoints. CONCLUSIONS: Our study indicates that AluYs are implicated in the past and current duplication events, and moreover suggests that DNA rearrangements in 22q11.2 genomic disorders perhaps do not occur randomly but involve both actively expanded duplication subunits and Alu elements.


Subject(s)
Chromosomes, Human, Pair 22/genetics , Gene Duplication/genetics , DNA Copy Number Variations/genetics , Humans , Recombination, Genetic/genetics
11.
Dev Dyn ; 240(1): 176-87, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21181942

ABSTRACT

Transforming Growth Factor ß (TGF-ß) is crucial for valve development and homeostasis. The long form of Latent TGF-ß binding protein 1 (LTBP1L) covalently binds all TGF-ß isoforms and regulates their bioavailability. Ltbp1L expression analysis during valvulogenesis revealed two patterns of Ltbp1L production: an early one (E9.5-11.5) associated with endothelial-to-mesenchymal transformation (EMT); and a late one (E12.5 to birth) contemporaneous with valve remodeling. Similarly, histological analysis of Ltbp1L(-/-) developing valves identified two different pathologies: generation of hypoplastic endocardial cushions in early valvulogenesis, followed by development of hyperplastic valves in late valvulogenesis. Ltbp1L promotes valve EMT, as Ltbp1L absence yields hypoplastic endocardial cushions in vivo and attenuated EMT in vitro. Ltbp1L(-/-) valve hyperplasia in late valvuogenesis represents a consequence of prolonged EMT. We demonstrate that Ltbp1L is a major regulator of Tgf-ß activity during valvulogenesis since its absence results in a perturbed Tgf-ß pathway that causes all Ltbp1L(-/-) valvular defects.


Subject(s)
Heart Valves/embryology , Latent TGF-beta Binding Proteins/physiology , Animals , Embryo, Mammalian , Embryonic Development/genetics , Gene Expression Regulation, Developmental , Gestational Age , Heart Defects, Congenital/genetics , Heart Valves/abnormalities , Heart Valves/metabolism , Hyperplasia , Latent TGF-beta Binding Proteins/chemistry , Latent TGF-beta Binding Proteins/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitral Valve/abnormalities , Mitral Valve/embryology , Mitral Valve/pathology , Protein Isoforms/genetics , Protein Isoforms/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Transforming Growth Factors/genetics , Transforming Growth Factors/metabolism
12.
Dev Biol ; 344(2): 669-81, 2010 Aug 15.
Article in English | MEDLINE | ID: mdl-20501333

ABSTRACT

Defects in the lower jaw, or mandible, occur commonly either as isolated malformations or in association with genetic syndromes. Understanding its formation and genetic pathways required for shaping its structure in mammalian model organisms will shed light into the pathogenesis of malformations in humans. The lower jaw is derived from the mandibular process of the first pharyngeal arch (MdPA1) during embryogenesis. Integral to the development of the mandible is the signaling interplay between Fgf8 and Bmp4 in the rostral ectoderm and their downstream effector genes in the underlying neural crest derived mesenchyme. The non-neural crest MdPA1 core mesoderm is needed to form muscles of mastication, but its role in patterning the mandible is unknown. Here, we show that mesoderm specific deletion of Tbx1, a T-box transcription factor and gene for velo-cardio-facial/DiGeorge syndrome, results in defects in formation of the proximal mandible by shifting expression of Fgf8, Bmp4 and their downstream effector genes in mouse embryos at E10.5. This occurs without significant changes in cell proliferation or apoptosis at the same stage. Our results elucidate a new function for the non-neural crest core mesoderm and specifically, mesodermal Tbx1, in shaping the lower jaw.


Subject(s)
Mesoderm/metabolism , Animals , Bone Morphogenetic Protein 4 , Branchial Region/metabolism , Crosses, Genetic , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Ectoderm/metabolism , Embryo, Mammalian , Embryonic Development/genetics , Fetal Proteins , Fibroblast Growth Factor 8 , Heart , Humans , Male , Mandible/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Mutant Strains , Mice, Transgenic , Neural Crest , T-Box Domain Proteins
13.
Dev Dyn ; 239(6): 1708-22, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20503367

ABSTRACT

To understand the mechanism by which canonical Wnt signaling sets boundaries for pattern formation in the otic vesicle (OV), we examined Tbx1 and Eya1-Six1 downstream of activated beta-catenin. Tbx1, the gene for velo-cardio-facial syndrome/DiGeorge syndrome (VCFS/DGS), is essential for inner ear development where it promotes Bmp4 and Otx1 expression and restricts neurogenesis. Using floxed beta-catenin gain-of-function (GOF) and loss-of-function (LOF) alleles, we found Tbx1 expression was down-regulated and maintained/enhanced in the two mouse mutants, respectively. Bmp4 was ectopically expressed and Otx1 was lost in beta-catenin GOF mutants. Normally, inactivation of Tbx1 causes expanded neurogenesis, but expression of NeuroD was down-regulated in beta-catenin GOF mutants. To explain this paradox, Eya1 and Six1, genes for branchio-oto-renal (BOR) syndrome were down-regulated in the OV of beta-catenin GOF mutants independently of Tbx1. Overall, this work helps explain the mechanism by which Wnt signaling modulates transcription factors required for neurogenesis and patterning of the OV.


Subject(s)
Ear/physiology , Signal Transduction/genetics , Animals , Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/metabolism , DiGeorge Syndrome/genetics , DiGeorge Syndrome/metabolism , Embryo, Mammalian , Mice , Mice, Mutant Strains , Mice, Transgenic , Morphogenesis/genetics , Neurogenesis , Transcription Factors/genetics , Transcription Factors/metabolism , beta Catenin/genetics , beta Catenin/metabolism
14.
Development ; 134(20): 3723-32, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17804598

ABSTRACT

Latent TGF-beta binding protein 1 (LTBP1) is a member of the LTBP/fibrillin family of extracellular proteins. Due to the usage of different promoters, LTBP1 exists in two major forms, long (L) and short (S), each expressed in a temporally and spatially unique fashion. Both LTBP1 molecules covalently interact with latent TGF-beta and regulate its function, presumably via interaction with the extracellular matrix (ECM). To explore the in vivo role of Ltbp1 in mouse development, at the time when only the L isoform is expressed, we mutated the Ltbp1L locus by gene targeting. Ltbp1L-null animals die shortly after birth from defects in heart development, consisting of the improper septation of the cardiac outflow tract (OFT) and remodeling of the associated vessels. These cardiac anomalies present as persistent truncus arteriosus (PTA) and interrupted aortic arch (IAA), which are associated with the faulty function of cardiac neural crest cells (CNCCs). The lack of Ltbp1L in the ECM of the septating OFT and associated vessels results in altered gene expression and function of CNCCs and decreased Tgf-beta activity in the OFT. This phenotype reveals a crucial role for Ltbp1L and matrix as extracellular regulators of Tgf-beta activity in heart organogenesis.


Subject(s)
Heart Defects, Congenital/genetics , Heart , Latent TGF-beta Binding Proteins/metabolism , Protein Isoforms/metabolism , Animals , Animals, Newborn , Cell Differentiation/physiology , Extracellular Matrix/metabolism , Gene Expression Regulation , Gene Targeting , Heart/anatomy & histology , Heart/embryology , Heart/physiology , Latent TGF-beta Binding Proteins/genetics , Mice , Mice, Knockout , Neural Crest/cytology , Protein Isoforms/genetics , Transforming Growth Factor beta/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...