Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Front Physiol ; 14: 1265443, 2023.
Article in English | MEDLINE | ID: mdl-38098807

ABSTRACT

Background: By directly recording electromyographic activity profiles and muscle-tendon interaction, this study aimed to elucidate the mechanisms why well-trained track and field athletes (experts) are able to outperform untrained individuals without former systematic experience in reactive jump training (novices). In particular, reactive power output and the elastic recoil properties of the muscle-tendon unit (MTU) were of special interest. For this purpose, stiffness regulation on muscle and joint level, energy management in terms of storing or dissipating elastic energy were compared between experts and novices during various stretch loads. Methods: Experts were compared with novices during reactive drop jumps (DJs) from drop heights ranging between 25 and 61 cm. Delta kinetic energy (Ekin) was calculated as the difference between the Ekin at take-off and ground contact (GC) to determine energy management. By recording electromyography of the lower limb muscles, in vivo fascicle dynamics (gastrocnemius medialis) and by combining kinematics and kinetics in a 3D inverse dynamics approach to compute ankle and knee joint kinetics, this study aimed to compare reactive jump performance, the neuromuscular activity and muscle-tendon interaction between experts and novices among the tested stretch loads. Results: Experts demonstrated significantly higher power output during DJs. Among all drop heights experts realized higher delta Ekin compared to novices. Consequently, higher reactive jump performance shown for experts was characterized by shorter GC time (GCT), higher jump heights and higher neuromuscular activity before and during the GC phase compared to novices. Concomitantly, experts were able to realize highest leg stiffness and delta Ekin in the lowest stretch load; however, both groups compensated the highest stretch load by prolonged GCT and greater joint flexion. On muscle level, experts work quasi-isometrically in the highest stretch load, while in novices GM fascicles were forcefully stretched. Conclusion: Group-specific stiffness regulation and elastic recoil properties are primarily influenced by the neuromuscular system. Due to their higher neuromuscular activity prior and during the GC phase, experts demonstrate higher force generating capacity. A functionally stiffer myotendinous system through enhanced neuromuscular input enables the experts loading their elastic recoil system more efficiently, thus realizing higher reactive power output and allowing a higher amount of energy storage and return. This mechanism is regulated in a stretch load dependent manner.

2.
J Appl Physiol (1985) ; 134(1): 190-202, 2023 01 01.
Article in English | MEDLINE | ID: mdl-36476161

ABSTRACT

This study evaluates neuromechanical control and muscle-tendon interaction during energy storage and dissipation tasks in hypergravity. During parabolic flights, while 17 subjects performed drop jumps (DJs) and drop landings (DLs), electromyography (EMG) of the lower limb muscles was combined with in vivo fascicle dynamics of the gastrocnemius medialis, two-dimensional (2D) kinematics, and kinetics to measure and analyze changes in energy management. Comparisons were made between movement modalities executed in hypergravity (1.8 G) and gravity on ground (1 G). In 1.8 G, ankle dorsiflexion, knee joint flexion, and vertical center of mass (COM) displacement are lower in DJs than in DLs; within each movement modality, joint flexion amplitudes and COM displacement demonstrate higher values in 1.8 G than in 1 G. Concomitantly, negative peak ankle joint power, vertical ground reaction forces, and leg stiffness are similar between both movement modalities (1.8 G). In DJs, EMG activity in 1.8 G is lower during the COM deceleration phase than in 1 G, thus impairing quasi-isometric fascicle behavior. In DLs, EMG activity before and during the COM deceleration phase is higher, and fascicles are stretched less in 1.8 G than in 1 G. Compared with the situation in 1 G, highly task-specific neuromuscular activity is diminished in 1.8 G, resulting in fascicle lengthening in both movement modalities. Specifically, in DJs, a high magnitude of neuromuscular activity is impaired, resulting in altered energy storage. In contrast, in DLs, linear stiffening of the system due to higher neuromuscular activity combined with lower fascicle stretch enhances the buffering function of the tendon, and thus the capacity to safely dissipate energy.NEW & NOTEWORTHY For the first time, the neuromechanics of distinct movement modalities that fundamentally differ in their energy management function have been investigated during overload systematically induced by hypergravity. Parabolic flight provides a unique experimental setting that allows near-natural movement execution without the confounding effects typically associated with load variation. Our findings show that gravity-adjusted muscle activities are inversely affected within jumps and landings. Specifically, in 1.8 G, typical task-specific differences in neuromuscular activity are reduced during the center of mass deceleration phase, resulting in fascicle lengthening, which is associated with energy dissipation.


Subject(s)
Muscle, Skeletal , Tendons , Humans , Biomechanical Phenomena , Tendons/physiology , Muscle, Skeletal/physiology , Electromyography , Leg/physiology , Muscle Contraction/physiology
3.
PLoS One ; 17(7): e0270698, 2022.
Article in English | MEDLINE | ID: mdl-35816473

ABSTRACT

People with multiple sclerosis (MS) suffer from sensorimotor deficits with the distal extremities being more severely affected than proximal ones. Whole-body vibration (WBV) training is known to enhance voluntary activation and coordination in healthy people. However, evidence about beneficial effects of WBV in MS patients is scarce. The current study aimed to investigate if six weeks of WBV enhances motor function in the ankle joint, coordination and quality of life in patients suffering from severe MS. In a longitudinal design, changes in motor function and quality of life were assessed before and after a 6-week control period without a training (CON) and a 6-week WBV training (2-3x/week) in 15 patients (53 ±10 years) with advanced MS (EDSS 3-6.5). Before CON (t0), after CON (t1) and after WBV(t2), outcome measures included (1) active range of motion (aROM) and (2) motor accuracy at the ankle joint, (3) functional mobility (Timed "Up & Go" test with preferred and non-preferred turns) and (4) physical and psychological impact of MS (MSIS-29 questionnaire). For (1) and (2), the stronger (SL) and the weaker leg (WL) were compared. After WBV, aROM (1) did not change (SL p = 0.26, WL p = 0.10), but was diminished after CON (SL -10% p = 0.06, WL -14% p = 0.03) with significant group differences (Δgroup WL p = 0.02). Motor accuracy in SL (2) was improved during dorsal flexion after WBV (p = 0.01, Δgroup p = 0.04) and deteriorated during plantar flexion after CON (p = 0.01, Δgroup p = 0.04). Additionally, participants (3) improved their functional mobility at the preferred turn (p = 0.04) and (4) ranked their quality of life higher solely after WBV (p = 0.05), without any differences between groups. However, values correlated significantly between angular precision and aROM as well as functional mobility. No further changes occurred. The results point towards an interception of degenerating mono-articular mobility and improvement of accuracy in the ankle joint. The motor effects after WBV are in line with enhanced perception of quality of life after six weeks which is why WBV could be a stimulus to enable greater overall autonomy in MS patients.


Subject(s)
Multiple Sclerosis , Exercise Therapy/methods , Humans , Multiple Sclerosis/therapy , Quality of Life , Vibration/therapeutic use
4.
Front Physiol ; 12: 714655, 2021.
Article in English | MEDLINE | ID: mdl-34421657

ABSTRACT

Purpose: Fascicle and sarcomere lengths are important predictors of muscle mechanical performance. However, their regulation during stretch-shortening cycle (SSC) activities in usual and challenging conditions is poorly understood. In this study, we aimed to investigate muscle fascicle and sarcomere behavior during drop jumps (a common SSC activity) in conditions of variable gravity. Methods: Fifteen volunteers performed repeated drop jumps in 1 g, hypo-gravity (0 to 1 g), and hyper-gravity (1 to 2 g) during a parabolic flight. Gastrocnemius medialis (GM) electromyographic activity and fascicle length (Lf) were measured at drop-off, ground contact (GC), minimum ankle joint angle (MAJ), and push-off. GM sarcomere number was estimated by dividing Lf, measured by ultrasound at rest, by published data on GM sarcomere length, and measured in vivo at the same joint angle. Changes in sarcomere length were estimated by dividing GM Lf in each jump phase by sarcomere number calculated individually. The sarcomere force-generating capacity in each jump phase was estimated from the sarcomere length-tension relationship previously reported in the literature. Results: The results showed that, regardless of the gravity level, GM sarcomeres operated in the ascending portion of their length-tension relationship in all the jump phases. Interestingly, although in hypo-gravity and hyper-gravity during the braking phase (GC-MAJ) GM fascicles and sarcomeres experienced a stretch (as opposed to the quasi-isometric behavior in 1 g), at MAJ they reached similar lengths as in 1 g, allowing sarcomeres to develop about the 70% of their maximum force. Conclusion: The observed fascicle behavior during drop jumping seems useful for anchoring the tendon, enabling storage of elastic energy and its release in the subsequent push-off phase for effectively re-bouncing in all gravity levels, suggesting that an innate neuromuscular wisdom enables to perform SSC movements also in challenging conditions.

5.
Front Physiol ; 12: 614060, 2021.
Article in English | MEDLINE | ID: mdl-33815134

ABSTRACT

Stretch-shortening type actions are characterized by lengthening of the pre-activated muscle-tendon unit (MTU) in the eccentric phase immediately followed by muscle shortening. Under 1 g, pre-activity before and muscle activity after ground contact, scale muscle stiffness, which is crucial for the recoil properties of the MTU in the subsequent push-off. This study aimed to examine the neuro-mechanical coupling of the stretch-shortening cycle in response to gravity levels ranging from 0.1 to 2 g. During parabolic flights, 17 subjects performed drop jumps while electromyography (EMG) of the lower limb muscles was combined with ultrasound images of the gastrocnemius medialis, 2D kinematics and kinetics to depict changes in energy management and performance. Neuro-mechanical coupling in 1 g was characterized by high magnitudes of pre-activity and eccentric muscle activity allowing an isometric muscle behavior during ground contact. EMG during pre-activity and the concentric phase systematically increased from 0.1 to 1 g. Below 1 g the EMG in the eccentric phase was diminished, leading to muscle lengthening and reduced MTU stretches. Kinetic energy at take-off and performance were decreased compared to 1 g. Above 1 g, reduced EMG in the eccentric phase was accompanied by large MTU and muscle stretch, increased joint flexion amplitudes, energy loss and reduced performance. The energy outcome function established by linear mixed model reveals that the central nervous system regulates the extensor muscles phase- and load-specifically. In conclusion, neuro-mechanical coupling appears to be optimized in 1 g. Below 1 g, the energy outcome is compromised by reduced muscle stiffness. Above 1 g, loading progressively induces muscle lengthening, thus facilitating energy dissipation.

6.
Article in English | MEDLINE | ID: mdl-33345066

ABSTRACT

This study aimed to determine whether spikes in acute:chronic workload ratio (ACWR) are associated with injury incidence, and to examine the differences in external load due to greater or lesser exposure to matches and the long-term effects of the load during a chronic seasonal period. Fifteen professional soccer players belonging to the squad of a European Champions League club were enrolled in this study. External training and match load were assessed from all athletes using a global positioning system (GPS). We calculated the uncoupled ACWR for 10 consecutive competitive microcycles. Injuries were identified and determined by the days of absence. The differences in external load were determined using a linear mixed-model approach. In addition to the null hypothesis testing, the effect size was calculated. Thirteen athletes who did not suffer an injury exceeded several times the critical threshold of an ACWR > 1.5. This is equivalent to 1 player exceeding the critical threshold for ACWR in total distance (TD), 2 players for ACWR at distance covered above moderate speed (MSD), 2 players for ACWR at distance covered above high speed (HSD), 2 players for ACWR at distance covered above very high speed (VHSD), and 2 players for ACWR in DC at sprint per week. One athlete experienced a non-contact muscle strain injury and another a contact -injury manifested as a concussion; both athletes document an ACWR <1.5 within the 4 weeks prior to the injury event. Players with lesser participation in official games covered lower TD (-19.6%, very-large ES), MSD (-24.8%, very-large ES), HSD (-25.1%, moderate ES), VHSD (-25.5%, moderate ES), and DC at sprint (-30.6%, moderate ES) over the course of the 10-weeks period in comparison with the players with greater participation in official games. The present study demonstrated that spikes in the ACWR were not related to a subsequent injury occurrence in professional soccer players. Differences in participation in official games caused significant imbalances in the chronic external loads between players in a squad, which should be minimized in training sessions in order to prevent substantial changes in workload for those who usually do not play.

7.
Hum Mov Sci ; 72: 102655, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32721374

ABSTRACT

PURPOSE: Acute whole-body vibration (WBV) is known to enhance neuromuscular activation. Especially mechanisms which act presynaptically are discussed to be involved in this modulation, but evidence is still limited. Therefore, this study aimed to investigate if 2 min of WBV might impact the premotoneuronal mechanism of post-activation depression (PAD). METHODS: PAD in m. soleus was assessed by paired-pulse stimulation in 28 healthy participants prior, 2 min, 4 min and 10 min after 2 min of side-alternating WBV (10 Hz, 2 mm). Methodologies involved electromyography (m. soleus, m. tibialis anterior) and goniometric recordings (ankle, knee joint). H-reflexes were elicited with peripheral nerve stimulation and assessed by means of conditioned H-reflexes (ISI 1 s, Hcond) versus control H-reflexes (ISI10, H). RESULTS: Hcond/H was significantly enhanced by +55% (2 min), +32% (4 min) and +35% (10 min) following WBV (P < 0.05). Baseline muscle activity and joint positions were shown to be reliable (Cronbach's α values >0.990) throughout the testing procedure. CONCLUSION: Vibratory-induced spinal inhibition is accompanied by diminished PAD at the presynaptic terminals which interconnect the Ia afferents with the α-motoneuron. Functionally, the PAD reduction might explain enhanced motor performance following vibration therapy, but future studies will be needed to verify this assumption.


Subject(s)
H-Reflex , Long-Term Synaptic Depression , Motor Neurons/physiology , Muscle, Skeletal/physiology , Presynaptic Terminals/physiology , Psychomotor Performance , Vibration , Adult , Ankle/physiology , Biomechanical Phenomena , Electromyography , Female , Healthy Volunteers , Humans , Knee Joint/physiology , Leg/physiology , Male , Muscle Contraction , Young Adult
8.
Scand J Med Sci Sports ; 30(1): 46-63, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31487062

ABSTRACT

This study examined the effect of drop height on neuromechanical control of the plantarflexors in drop jumps (DJs) before and during ground contact (GC). The effect of anticipation on muscle mechanical configurations was investigated in 22 subjects in three conditions (20, 30, and 40 cm): (i) known, (ii) unknown, or (iii) cheat falling heights (announced 40 cm, but actual drop height was 20 cm). Electromyographic (EMG) activity of the m. gastrocnemius medialis (GM) and other shank muscles was recorded and analyzed before GC and during GC separately for the short-, medium-, and long-latency responses (SLR, MLR, and LLR). Changes in GM fascicle length (LM ) were determined via B-mode ultrasound, and muscle-tendon unit length (LMTU ) was estimated. Peak force (P < .001), rate of force development (RFD) (P = .001) and GM EMG activity prior to (P = .003) and during GC (P = .007) was reduced in the unknown compared with the known conditions (P < .05). The amount of shortening in LMTU during GC in unknown and cheat was less compared with the known conditions (P = .005; P = .049). Changes in LMTU lengthening negatively correlated with changes in GM activity around SLR and MLR (P = .006; P = .02) in known and unknown conditions. Taken together, it seems that the central nervous system applies a protective strategy in the unknown condition by reducing muscle activity to result in a lower muscular stiffness and increased tendinous lengthening prior to and during GC. This might be a mechanism to absorb greater elastic energy in the tendon and reduce the magnitude and rate of muscle lengthening and subsequent stretch-induced muscle damage.


Subject(s)
Anticipation, Psychological , Central Nervous System/physiology , Movement , Muscle, Skeletal/physiology , Tendons/physiology , Adult , Biomechanical Phenomena , Electromyography , Female , Humans , Knee Joint/physiology , Male , Range of Motion, Articular , Ultrasonography , Young Adult
9.
Eur J Appl Physiol ; 119(9): 1981-1999, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31367910

ABSTRACT

PURPOSE: This study aimed at investigating how prior knowledge of drop heights affects proactive and reactive motor control in drop jumps (DJ). METHODS: In 22 subjects, the effect of knowledge of three different drop heights (20, 30, 40 cm) during DJs was evaluated in seven conditions: three different drop heights were either known, unknown or cheated (announced 40 cm, but actual drop height was 20 cm). Peak ground reaction force (Fmax) to body weight (BW) ratio (Fmax/BW) and electromyographic (EMG) activities of three shank and five thigh muscles were assessed 150 ms before and during ground contact (GC). Ankle, knee and hip joint kinematics were recorded in the sagittal plane. RESULTS: Leg stiffness, proactive and reactive EMG activity of the leg muscles diminished in unknown and cheat conditions for all drop heights (7-33% and 2-26%, respectively). Antagonistic co-activation increased in unknown (3-37%). At touchdown, increased flexion in knee (~ 5.3° ± 1.9°) and hip extension (~ 2° ± 0.6°) were observed in unknown, followed by an increased angular excursion in hip (~ 2.3° ± 0.2°) and knee joints (~ 5.6° ± 0.2°) during GC (p < 0.05). Correlations between changes in activation intensities, joint kinematics, leg stiffness and Fmax/BW (p < 0.05) indicate that anticipation changes the neuromechanical coupling of DJs. No dropouts were recorded. CONCLUSION: These findings underline that anticipation influences timing and adjustment of motor responses. It is argued that proactive and reactive modulations associated with diminished activation intensities in leg extensors are functionally relevant in explaining changes in leg stiffness and subsequent decline in performance.


Subject(s)
Leg/physiology , Movement/physiology , Muscle Contraction/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Adult , Ankle/physiology , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Electromyography/methods , Female , Hip Joint/physiology , Humans , Knee/physiology , Knee Joint/physiology , Male , Thigh/physiology , Young Adult
10.
Sci Rep ; 9(1): 10490, 2019 07 19.
Article in English | MEDLINE | ID: mdl-31324854

ABSTRACT

The control of bipedal stance and the capacity to regain postural equilibrium after its deterioration in variable gravities are crucial prerequisites for manned space missions. With an emphasize on natural orthograde posture, computational techniques synthesize muscle activation patterns of high complexity to a simple synergy organization. We used nonnegative matrix factorization to identify muscle synergies during postural recovery responses in human and to examine the functional significance of such synergies for hyper-gravity (1.75 g) and hypo-gravity (0.25 g). Electromyographic data were recorded from leg, trunk and arm muscles of five human exposed to five modes of anterior and posterior support surface translations during parabolic flights including transitional g-levels of 0.25, 1 and 1.75 g. Results showed that in 1 g four synergies accounted for 99% of the automatic postural response across all muscles and perturbation directions. Each synergy in 1 g was correlated to the corresponding one in 0.25 and 1.75 g. This study therefore emphasizes the similarity of the synergy organization of postural recovery responses in Earth, hypo- and hyper-gravity conditions, indicating that the muscle synergies and segmental strategies acquired under terrestrial habits are robust and persistent across variable and acute changes in gravity levels.


Subject(s)
Hypergravity , Hypogravity , Postural Balance , Adult , Aircraft , Electromyography , Female , Humans , Hypergravity/adverse effects , Hypogravity/adverse effects , Male , Muscle, Skeletal/physiology , Postural Balance/physiology , Posture/physiology
11.
Front Physiol ; 10: 576, 2019.
Article in English | MEDLINE | ID: mdl-31164834

ABSTRACT

Spontaneous changes in gravity play a significant role in interplanetary space missions. To preserve the astronauts' capability to execute mission-critical tasks and reduce the risk of injury in transit and on planetary surfaces, a comprehensive understanding of the neuromuscular control of postural responses after balance deterioration in hypo- or hyper-gravity conditions is essential. Therefore, this study aimed to evaluate the effect of acute gravitational variation on postural adjustments in response to perturbations. Gravitational changes were induced using parabolic flight. Postural set was manipulated by randomly providing unilateral left, bilateral or split perturbations which require balance corrections to restore postural stability. In six subjects, postural reactions were recorded after anterior and posterior surface perturbations for progressively increased gravitational conditions spanning from 0.25 to 1.75 g. Ankle and knee joint kinematics and electromyograms (EMG) of eight leg muscles were recorded prior (PRE) and after perturbation onset. Muscle activation onset latencies and amplitudes in the short-, medium-, and long-latency responses (SLR, MLR, LLR) were assessed. Results demonstrate an increased muscle activity (p < 0.05) and co-contraction in the lower extremities (p < 0.05) prior to perturbation in hypo- and hyper-gravity. After perturbation, reduced muscle onset latencies (p < 0.05) and increased muscle activations in the MLR and LLR (p < 0.05), concomitant with an increased co-contraction in the SLR, were manifested with a progressive rise in gravity. Ankle and knee joint deflections remained unaffected, whereas angular velocities increased (p < 0.05) with increasing gravitation. Effects were more pronounced in bi- compared to unilateral or split perturbations (p < 0.05). Neuro-mechanical adaptations to gravity were more distinct and muscle onset latencies were shorter in the displaced compared to the non-displaced leg. In conclusion, the timing and magnitude of postural reflexes involved in stabilization of bipedal stance are gravity-dependent. The approximately linear relationship between gravity and impulse-directed EMG amplitudes or muscle onset latencies after perturbation indicates that the central nervous system correctly predicts the level of gravity. Moreover, it accurately governs contractions in the antigravity musculature to counterbalance the gravitational pull and to regain upright posture after its disturbance. Importantly, unilateral perturbations evoked fast reflex responses in the synergistic muscles of the non-displaced contralateral leg suggesting a synchronized inter-limb coordination mediated by spinal circuitries.

12.
Mult Scler Relat Disord ; 31: 134-140, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30991299

ABSTRACT

OBJECTIVE: The current study aimed to investigate if whole-body vibration (WBV) might attenuate the processing functional and neuromuscular degeneration of postural control in patients with MS. DESIGN: Performance in postural control was assessed before and after 6 weeks of a control (CON) and a WBV intervention period. SETTING: Laboratory at the University of Freiburg & home-based training PARTICIPANTS: Out of 29 interested participants, 15 subjects with severe MS fit inclusion criteria. MAIN OUTCOME MEASURES: Centre of pressure displacement (COP), muscle activity and co-contraction indices of m. soleus (SOL), gastrocnemius medialis (GM), tibialis anterior (TA), biceps (BF) and rectus femoris (RF) as well as SOL H/M-ratios. RESULTS: After CON, COP was significantly enhanced with reduced muscle activity in RF and diminished shank muscle co-contraction. After WBV, no changes were observed in COP and neuromuscular control. However, over time, TA activity was reduced, but with no changes in muscle activation of SOL, GM and BF or H/M-ratios. CONCLUSIONS: After CON, MS patients experienced substantial deteriorations in postural control which have previously been associated with greater postural instability. No further disease-associated deteriorations were observed following the intervention. Thus, WBV might alleviate neurodegeneration of postural control in people with MS.


Subject(s)
Exercise Therapy/methods , Multiple Sclerosis/prevention & control , Multiple Sclerosis/physiopathology , Postural Balance , Female , H-Reflex , Humans , Male , Middle Aged , Muscle, Skeletal/physiopathology , Physical Stimulation , Vibration
13.
PLoS One ; 14(1): e0211276, 2019.
Article in English | MEDLINE | ID: mdl-30682132

ABSTRACT

With an emphasis on ballistic movements, an accurately anticipated neural control is an essential prerequisite to deliver a motor response coincidentally with the event of ground contact. This study investigated how previous knowledge of the ground condition affects proactive and reactive motor control in drop jumps (DJ). Thereby, human anticipatory capacity of muscle activation was investigated regarding neuromuscular activation, joint kinematics and peak forces associated with DJ performance. In 18 subjects, the effect of knowledge of two different surface conditions during DJs was evaluated. Peak force, ground-contact-time (GCT), rate of force development (RFD) and jump height were assessed. Electromyographic (EMG) activities of the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed for 150ms before (PRE) and during ground contact (GC) for the short-, medium-, and long-latency responses. Ankle and knee joint kinematics were recorded in the sagittal plane.In the unknown conditions peak force, RFD and jump height declined, GCT was prolonged, proactive EMG activity (PRE) in SOL and GM was diminished (P<0.05). During GC, a decline in EMG activity in the unknown condition was manifested for SOL and GM for the SLR, MLR and LLR (P<0.05). Ankle and knee joint deflections during GC were increased in the unknown vs. known condition (P<0.05). Peak force, RFD and jump height were positively correlated to GM-EMG in PRE, SLR, MLR and LLR (P<0.05). Results revealed that proactive and reactive modulations in muscle activity prior and during GC are interrelated to the force-time characteristics and height of the jumps. The unknown condition revealed a comparable neuromuscular activity during pre-activation for both conditions, followed by an inhibition in the subsequent phase after touch down. These findings underline that anticipation is a determining factor influencing timing and adjustment of motor responses to accomplish ballistic movements regarding precision and performance.


Subject(s)
Ankle/physiology , Anticipation, Psychological/physiology , Knee/physiology , Muscle, Skeletal/physiology , Adult , Biomechanical Phenomena , Electromyography/methods , Female , Humans , Male , Movement , Reaction Time , Young Adult
14.
Front Physiol ; 9: 1713, 2018.
Article in English | MEDLINE | ID: mdl-30559676

ABSTRACT

Physical inactivity causes a deconditioning of the human body. Concerns due to chronic bed-rest include deficits in posture and gait control, predisposing individuals to an increased fall and injury risk. This study assessed the efficiency of a high-load jump exercise (JUMP) as a countermeasure to prevent detrimental effects on gait, posture control and functional mobility. In an RCT (23 males), the effect of 60 days bed-rest without training was compared to JUMP. JUMP is characterized by plyometric executed as a high intensity interval training. Typical trainings session consisted of 4 × 10 countermovement jumps and 2 × 10 hops in a sledge jump system. We assessed sway path and muscle activity in monopedal stance, spatiotemporal, kinematic, and variability characteristics in gait, functional mobility with repeated chair-rises and Timed Up and Go (TUG). Results revealed: The JUMP group showed no significant changes after bed-rest, whereas the control group exhibited substantial deteriorations: an increased sway path (+104%, p < 0.05) was accompanied by increased co-contractions of antagonistic muscles encompassing the ankle (+32%, p < 0.05) and knee joint (45%, p < 0.05). A reduced locomotor speed (-22%, p < 0.05) was found concomitant with pathological gait rhythmicity (p < 0.05), reduced joint excursions (ankle -8%, knee -29%, p < 0.05) and an increased gait variability (p < 0.05). Chair-rising was slowed (+28%, p < 0.05) with reduced peak power (+18%, p < 0.05), and more time was needed to accomplish TUG (+39%, p < 0.05). The effects persisted for a period of 1 month after bed-rest. Increases in sway path were correlated to decreases in gait speed. The JUMP effectively preserved the neuromuscular system's ability to safely control postural equilibrium and perform complex locomotor movements, including fast bipedal gait with turns and rises. We therefore recommend JUMP as an appropriate strategy combatting functional deconditioning.

15.
Front Physiol ; 9: 1075, 2018.
Article in English | MEDLINE | ID: mdl-30131722

ABSTRACT

Slips and stumbles are main causes of falls and result in serious injuries. Balance training is widely applied for preventing falls across the lifespan. Subdivided into two main intervention types, biomechanical characteristics differ amongst balance interventions tailored to counteract falls: conventional balance training (CBT) referring to a balance task with a static ledger pivoting around the ankle joint versus reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. This study aimed to evaluate the efficacy of reactive, slip-simulating RBT compared to CBT in regard to fall prevention and to detect neuromuscular and kinematic dependencies. In a randomized controlled trial, 38 participants were randomly allocated either to CBT or RBT. To simulate stumbling scenarios, postural responses were assessed to posterior translations in gait and stance perturbation before and after 4 weeks of training. Surface electromyography during short- (SLR), medium- (MLR), and long-latency response of shank and thigh muscles as well as ankle, knee, and hip joint kinematics (amplitudes and velocities) were recorded. Both training modalities revealed reduced angular velocity in the ankle joint (P < 0.05) accompanied by increased shank muscle activity in SLR (P < 0.05) during marching in place perturbation. During stance perturbation and marching in place perturbation, hip angular velocity was decreased after RBT (P from TTEST, Pt < 0.05) accompanied by enhanced thigh muscle activity (SLR, MLR) after both trainings (P < 0.05). Effect sizes were larger for the RBT-group during stance perturbation. Thus, both interventions revealed modified stabilization strategies for reactive balance recovery after surface translations. Characterized by enhanced reflex activity in the leg muscles antagonizing the surface translations, balance training is associated with improved neuromuscular timing and accuracy being relevant for postural control. This may result in more efficient segmental stabilization during fall risk situations, independent of the intervention modality. More pronounced modulations and higher effect sizes after RBT in stance perturbation point toward specificity of training adaptations, with an emphasis on the proximal body segment for RBT. Outcomes underline the benefits of balance training with a clear distinction between RBT and CBT being relevant for training application over the lifespan.

16.
Hum Mov Sci ; 60: 191-201, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29957423

ABSTRACT

Based on previous evidence that whole-body vibration (WBV) affects pathways involved in disynaptic reciprocal inhibition (DRI), the present hypothesis-driven experiment aimed to assess the acute effects of WBV on DRI and co-contraction. DRI from ankle dorsiflexors to plantar flexors was investigated during submaximal dorsiflexion before and after 1 min of WBV. With electromyography, musculus soleus (SOL) H-reflex depression following a conditioning stimulation of the peroneal nerve (1.1x motor threshold for the musculus tibialis anterior, TA) was assessed and co-contraction was calculated. After WBV, DRI was significantly increased (+4%, p < 0.05). SOL (-13%, p < 0.05) and TA (-6%, p < 0.05) activities were significantly reduced; co-contraction tended to be diminished (-8%, p = 0.05). Dorsiflexion torque remained unchanged. After WBV, DRI increased during submaximal isometric contraction in healthy subjects. The simultaneous SOL relaxation and TA contraction indicate that a more economic movement execution is of functional significance for WBV application in clinical and athletic treatment.


Subject(s)
Inhibition, Psychological , Vibration , Adult , Ankle/physiology , Electromyography , Female , Foot/physiology , H-Reflex/physiology , Humans , Isometric Contraction , Male , Movement , Muscle, Skeletal/physiology , Peroneal Nerve/physiology , Recruitment, Neurophysiological , Torque , Young Adult
17.
Front Integr Neurosci ; 12: 62, 2018.
Article in English | MEDLINE | ID: mdl-30618657

ABSTRACT

Anticipation determines the timing and efficiency of human motor performance. This study aimed to evaluate the effect of stimulus anticipation on proactive (prior to the event) and reactive (after the event) postural adjustments in response to perturbations. Postural set was manipulated by providing either (i) predictable, (ii) unpredictable, or (iii) cheated perturbations which require balance corrections to maintain postural stability. In 29 subjects, a protocol of anterior and posterior perturbations was applied for the conditions (i-iii). Center of pressure (COP) displacement, ankle, knee, and hip joint kinematics and electromyographic activity (EMG) of the soleus (SOL) and tibialis anterior (TA) muscles were recorded prior (PRE) and after posterior perturbations. SOL H-reflexes at the peak of the short-, medium- ,and long-latency responses (SLR, MLR, LLR) were assessed. For conditions (i to iii) EMG activity and COP differed prior to perturbation onset (p < 0.05). After perturbation, results demonstrated a progressively increased H-reflex amplitude in the MLR and LLR (p < 0.05), delayed muscle activities (p < 0.05), and shifted activation patterns, with muscles of the proximal segment being more involved in the compensatory postural response (p < 0.05). COP displacements and ankle, knee, and hip joint deflections progressively increased (p < 0.05). Neuromechanical coupling showed positive correlations for the anticipation-induced changes in EMG activity and H-reflex amplitude with that of COP displacement (p < 0.05). In conclusion, proactive and reactive postural responses indicated setting dependent modulations of segmental and phasic muscle activation. A shift to proximal muscle groups and facilitated late reflex responses compensating for cheated or unpredicted perturbations was found to recover a safe body equilibrium. In consideration of the phase-specific adaptation and its interrelationship to the kinematics, it suggested that changes in stimulus prediction challenged the central nervous system to appropriately counteract the higher postural challenges. The outcomes of this experiment are of functional relevance for experimental and training settings involving perturbation stimuli. These findings provide fundamental information of the mechanisms underlying postural adjustments in response to external perturbations.

18.
Front Neurol ; 8: 416, 2017.
Article in English | MEDLINE | ID: mdl-28861038

ABSTRACT

INTRODUCTION: Individuals suffering from cerebral palsy (CP) often have involuntary, reflex-evoked muscle activity resulting in spastic hyperreflexia. Whole-body vibration (WBV) has been demonstrated to reduce reflex activity in healthy subjects, but evidence in CP patients is still limited. Therefore, this study aimed to establish the acute neuromuscular and kinematic effects of WBV in subjects with spastic CP. METHODS: 44 children with spastic CP were tested on neuromuscular activation and kinematics before and immediately after a 1-min bout of WBV (16-25 Hz, 1.5-3 mm). Assessment included (1) recordings of stretch reflex (SR) activity of the triceps surae, (2) electromyography (EMG) measurements of maximal voluntary muscle activation of lower limb muscles, and (3) neuromuscular activation during active range of motion (aROM). We recorded EMG of m. soleus (SOL), m. gastrocnemius medialis (GM), m. tibialis anterior, m. vastus medialis, m. rectus femoris, and m. biceps femoris. Angular excursion was recorded by goniometry of the ankle and knee joint. RESULTS: After WBV, (1) SOL SRs were decreased (p < 0.01) while (2) maximal voluntary activation (p < 0.05) and (3) angular excursion in the knee joint (p < 0.01) were significantly increased. No changes could be observed for GM SR amplitudes or ankle joint excursion. Neuromuscular coordination expressed by greater agonist-antagonist ratios during aROM was significantly enhanced (p < 0.05). DISCUSSION: The findings point toward acute neuromuscular and kinematic effects following one bout of WBV. Protocols demonstrate that pathological reflex responses are reduced (spinal level), while the execution of voluntary movement (supraspinal level) is improved in regards to kinematic and neuromuscular control. This facilitation of muscle and joint control is probably due to a reduction of spasticity-associated spinal excitability in favor of giving access for greater supraspinal input during voluntary motor control.

19.
PLoS One ; 11(12): e0167557, 2016.
Article in English | MEDLINE | ID: mdl-27911944

ABSTRACT

Typically, balance training has been used as an intervention paradigm either as static or as reactive balance training. Possible differences in functional outcomes between the two modalities have not been profoundly studied. The objective of the study was to investigate the specificity of neuromuscular adaptations in response to two balance intervention modalities within test and intervention paradigms containing characteristics of both profiles: classical sensorimotor training (SMT) referring to a static ledger pivoting around the ankle joint vs. reactive balance training (RBT) using externally applied perturbations to deteriorate body equilibrium. Thirty-eight subjects were assigned to either SMT or RBT. Before and after four weeks of intervention training, postural sway and electromyographic activities of shank and thigh muscles were recorded and co-contraction indices (CCI) were calculated. We argue that specificity of training interventions could be transferred into corresponding test settings containing properties of SMT and RBT, respectively. The results revealed that i) postural sway was reduced in both intervention groups in all test paradigms; magnitude of changes and effect sizes differed dependent on the paradigm: when training and paradigm coincided most, effects were augmented (P<0.05). ii) These specificities were accompanied by segmental modulations in the amount of CCI, with a greater reduction within the CCI of thigh muscles after RBT compared to the shank muscles after SMT (P<0.05). The results clearly indicate the relationship between test and intervention specificity in balance performance. Hence, specific training modalities of postural control cause multi-segmental and context-specific adaptations, depending upon the characteristics of the trained postural strategy. In relation to fall prevention, perturbation training could serve as an extension to SMT to include the proximal segment, and thus the control of structures near to the body's centre of mass, into training.


Subject(s)
Adaptation, Physiological/physiology , Ankle Joint/physiology , Feedback, Sensory/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Adult , Female , Humans , Male
20.
J Appl Physiol (1985) ; 121(5): 1187-1195, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27660301

ABSTRACT

On our astronomical neighbors Mars and the Moon, bouncing movements are the preferred locomotor techniques. During bouncing, the stretch-shortening cycle describes the muscular activation pattern. This study aimed to identify gravity-dependent changes in kinematic and neuromuscular characteristics in the stretch-shortening cycle. Hence, neuromuscular control of limb muscles as well as correlations between the muscles' pre-activation, reflex components, and force output were assessed in lunar, Martian, and Earth gravity. During parabolic flights, peak force (Fmax), ground-contact-time, rate of force development (RFD), height, and impulse were measured. Electromyographic (EMG) activities in the m. soleus (SOL) and gastrocnemius medialis (GM) were assessed before (PRE) and during bounces for the reflex phases short-, medium-, and long-latency response (SLR, MLR, LLR). With gradually decreasing gravitation, Fmax, RFD, and impulse were reduced, whereas ground-contact time and height increased. Concomitantly, EMG_GM decreased for PRE, SLR, MLR, and LLR, and in EMG_SOL in SLR, MLR, and LLR. For SLR and MLR, Fmax and RFD were positively correlated to EMG_SOL. For PRE and LLR, RFD and Fmax were positively correlated to EMG_GM. Findings emphasize that biomechanically relevant kinematic adaptations in response to gravity variation were accompanied by muscle- and phase-specific modulations in neural control. Gravitational variation is anticipated and compensated for by gravity-adjusted muscle activities. Importantly, the pre-activation and reflex phases were differently affected: in SLR and MLR, SOL is assumed to contribute to the decline in force output with a decreasing load, and, complementary in PRE and LLR, GM seems to be of major importance for force generation.


Subject(s)
Locomotion/physiology , Movement/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Adult , Electromyography/methods , Female , Gravitation , H-Reflex/physiology , Humans , Male , Mars , Moon , Reaction Time/physiology , Reflex, Stretch/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...