Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(14): 2942-2950, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35181596

ABSTRACT

Inhibitory microcircuits play an essential role in regulating cortical responses to sensory stimuli. Interneurons that inhibit dendritic or somatic integration act as gatekeepers for neural activity, synaptic plasticity, and the formation of sensory representations. Conversely, interneurons that selectively inhibit other interneurons can open gates through disinhibition. In the anterior piriform cortex, relief of inhibition permits associative LTP of excitatory synapses between pyramidal neurons. However, the interneurons and circuits mediating disinhibition have not been elucidated. In this study, we use an optogenetic approach in mice of both sexes to identify the inhibitory interneurons and disinhibitory circuits that regulate LTP. We focused on three prominent interneuron classes: somatostatin (SST), parvalbumin (PV), and vasoactive intestinal polypeptide (VIP) interneurons. We find that LTP is gated by the inactivation SST or PV interneurons and by the activation of VIP interneurons. Further, VIP interneurons strongly inhibit putative SST cells during LTP induction but only weakly inhibit PV interneurons. Together, these findings suggest that VIP interneurons mediate a disinhibitory circuit that gates synaptic plasticity during the formation of olfactory representations.SIGNIFICANCE STATEMENT Inhibitory interneurons stabilize neural activity during sensory processing. However, inhibition must also be modulated to allow sensory experience shape neural responses. In olfactory cortex, inhibition regulates activity-dependent increases in excitatory synaptic strength that accompany odor learning. We identify two inhibitory interneuron classes that act as gatekeepers preventing excitatory enhancement. We demonstrate that driving a third class of interneurons inhibits the gatekeepers and opens the gate for excitatory enhancement. All three inhibitory neuron classes comprise disinhibitory microcircuit motifs found throughout the cortex. Our findings suggest that a common disinhibitory microcircuit promotes changes in synaptic strength during sensory processing and learning.


Subject(s)
Interneurons , Piriform Cortex , Animals , Female , Interneurons/physiology , Male , Mice , Neural Inhibition/physiology , Neuronal Plasticity/physiology , Parvalbumins/metabolism , Piriform Cortex/metabolism , Pyramidal Cells/physiology , Vasoactive Intestinal Peptide/metabolism
2.
Proc Natl Acad Sci U S A ; 115(34): E8067-E8076, 2018 08 21.
Article in English | MEDLINE | ID: mdl-30087186

ABSTRACT

The spatial representation of stimuli in sensory neocortices provides a scaffold for elucidating circuit mechanisms underlying sensory processing. However, the anterior piriform cortex (APC) lacks topology for odor identity as well as afferent and intracortical excitation. Consequently, olfactory processing is considered homogenous along the APC rostral-caudal (RC) axis. We recorded excitatory and inhibitory neurons in APC while optogenetically activating GABAergic interneurons along the RC axis. In contrast to excitation, we find opposing, spatially asymmetric inhibition onto pyramidal cells (PCs) and interneurons. PCs are strongly inhibited by caudal stimulation sites, whereas interneurons are strongly inhibited by rostral sites. At least two mechanisms underlie spatial asymmetries. Enhanced caudal inhibition of PCs is due to increased synaptic strength, whereas rostrally biased inhibition of interneurons is mediated by increased somatostatin-interneuron density. Altogether, we show differences in rostral and caudal inhibitory circuits in APC that may underlie spatial variation in odor processing along the RC axis.


Subject(s)
Interneurons/metabolism , Olfactory Perception/physiology , Piriform Cortex/metabolism , Pyramidal Cells/metabolism , Synaptic Transmission/physiology , Animals , GABAergic Neurons/cytology , GABAergic Neurons/metabolism , Interneurons/cytology , Mice , Mice, Transgenic , Piriform Cortex/cytology , Pyramidal Cells/cytology , Synapses/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...