Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Res ; 27(9): 1597-1607, 2017 09.
Article in English | MEDLINE | ID: mdl-28774965

ABSTRACT

Genes in the major histocompatibility complex (MHC, also known as HLA) play a critical role in the immune response and variation within the extended 4-Mb region shows association with major risks of many diseases. Yet, deciphering the underlying causes of these associations is difficult because the MHC is the most polymorphic region of the genome with a complex linkage disequilibrium structure. Here, we reconstruct full MHC haplotypes from de novo assembled trios without relying on a reference genome and perform evolutionary analyses. We report 100 full MHC haplotypes and call a large set of structural variants in the regions for future use in imputation with GWAS data. We also present the first complete analysis of the recombination landscape in the entire region and show how balancing selection at classical genes have linked effects on the frequency of variants throughout the region.


Subject(s)
Genetic Variation/genetics , Genetics, Population , Linkage Disequilibrium/genetics , Major Histocompatibility Complex/genetics , Alleles , Chromosome Mapping , Denmark , Haplotypes/genetics , Humans , Polymorphism, Single Nucleotide/genetics
2.
Nature ; 548(7665): 87-91, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28746312

ABSTRACT

Hundreds of thousands of human genomes are now being sequenced to characterize genetic variation and use this information to augment association mapping studies of complex disorders and other phenotypic traits. Genetic variation is identified mainly by mapping short reads to the reference genome or by performing local assembly. However, these approaches are biased against discovery of structural variants and variation in the more complex parts of the genome. Hence, large-scale de novo assembly is needed. Here we show that it is possible to construct excellent de novo assemblies from high-coverage sequencing with mate-pair libraries extending up to 20 kilobases. We report de novo assemblies of 150 individuals (50 trios) from the GenomeDenmark project. The quality of these assemblies is similar to those obtained using the more expensive long-read technology. We use the assemblies to identify a rich set of structural variants including many novel insertions and demonstrate how this variant catalogue enables further deciphering of known association mapping signals. We leverage the assemblies to provide 100 completely resolved major histocompatibility complex haplotypes and to resolve major parts of the Y chromosome. Our study provides a regional reference genome that we expect will improve the power of future association mapping studies and hence pave the way for precision medicine initiatives, which now are being launched in many countries including Denmark.


Subject(s)
Genetic Variation/genetics , Genetics, Population/standards , Genome, Human/genetics , Genomics/standards , Sequence Analysis, DNA/standards , Adult , Alleles , Child , Chromosomes, Human, Y/genetics , Denmark , Female , Haplotypes/genetics , Humans , Major Histocompatibility Complex/genetics , Male , Maternal Age , Mutation Rate , Paternal Age , Point Mutation/genetics , Reference Standards
3.
Nat Commun ; 6: 5969, 2015 Jan 19.
Article in English | MEDLINE | ID: mdl-25597990

ABSTRACT

Building a population-specific catalogue of single nucleotide variants (SNVs), indels and structural variants (SVs) with frequencies, termed a national pan-genome, is critical for further advancing clinical and public health genetics in large cohorts. Here we report a Danish pan-genome obtained from sequencing 10 trios to high depth (50 × ). We report 536k novel SNVs and 283k novel short indels from mapping approaches and develop a population-wide de novo assembly approach to identify 132k novel indels larger than 10 nucleotides with low false discovery rates. We identify a higher proportion of indels and SVs than previous efforts showing the merits of high coverage and de novo assembly approaches. In addition, we use trio information to identify de novo mutations and use a probabilistic method to provide direct estimates of 1.27e-8 and 1.5e-9 per nucleotide per generation for SNVs and indels, respectively.


Subject(s)
Genome, Human/genetics , Algorithms , Humans , Mutation Rate , Polymorphism, Single Nucleotide/genetics , Sequence Analysis, DNA/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...