Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 1676, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36966137

ABSTRACT

Marine silicate alteration plays a key role in the global carbon and cation cycles, although the timeframe of this process in response to extreme weather events is poorly understood. Here we investigate surface sediments across the Peruvian margin before and after extreme rainfall and runoff (coastal El Niño) using Ge/Si ratios and laser-ablated solid and pore fluid Si isotopes (δ30Si). Pore fluids following the rainfall show elevated Ge/Si ratios (2.87 µmol mol-1) and δ30Si values (3.72‰), which we relate to rapid authigenic clay formation from reactive terrigenous minerals delivered by continental runoff. This study highlights the direct coupling of terrestrial erosion and associated marine sedimentary processes. We show that marine silicate alteration can be rapid and highly dynamic in response to local weather conditions, with a potential impact on marine alkalinity and CO2-cycling on short timescales of weeks to months, and thus element turnover on human time scales.

2.
Anal Sci Adv ; 1(1): 8-21, 2020 Jun.
Article in English | MEDLINE | ID: mdl-38715846

ABSTRACT

Beryllium (Be) is known to be one of the most toxic elements but at the same time exerts a stimulating effect on plant growth. Despite this contradiction, little is known about the Be metabolism in living organisms, partially because of the low amounts present and because the analysis of Be in plants by ICP-MS remains challenging. The challenges arise from the complex organic matrix, the low abundance of Be relative to the other plant essential elements, and the matrix effects resulting thereof in the plasma. To address these challenges, we developed and evaluated a new method for Be concentration analysis in plant material. Key is the quantitative separation of Be from the other matrix elements by cation-exchange chromatography. The new method was verified by processing seven reference materials representing different plant matrices yielding a long-term reproducibility of 16% (RSD). Applying the method, Be concentrations in tree, shrub, bush, and grass samples grown in non-polluted ecosystems from four temperate forests and a tropical rainforest were measured. The Be concentrations in different plant organs range from 0.01 to 63 ng/g that suggest a natural baseline for Be concentrations of 52 ng/g (95 percentile of non-woody tissue) that may serve as bioindicator for Be pollution in the environment. Comparison of Be concentrations in plants with the soil's biologically available fraction revealed that Be is discriminated from uptake into shoots and thus can be considered as non-essential.

3.
Anal Chim Acta ; 938: 33-43, 2016 Sep 28.
Article in English | MEDLINE | ID: mdl-27619084

ABSTRACT

Stable metal (e.g. Li, Mg, Ca, Fe, Cu, Zn, and Mo) and metalloid (B, Si, Ge) isotope ratio systems have emerged as geochemical tracers to fingerprint distinct physicochemical reactions. These systems are relevant to many Earth Science questions. The benefit of in situ microscale analysis using laser ablation (LA) over bulk sample analysis is to use the spatial context of different phases in the solid sample to disclose the processes that govern their chemical and isotopic compositions. However, there is a lack of in situ analytical routines to obtain a samples' stable isotope ratio together with its chemical composition. Here, we evaluate two novel analytical routines for the simultaneous determination of the chemical and Si stable isotope composition (δ(30)Si) on the micrometre scale in geological samples. In both routines, multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) is combined with femtosecond-LA, where stable isotope ratios are corrected for mass bias using standard-sample-bracketing with matrix-independent calibration. The first method is based on laser ablation split stream (LASS), where the laser aerosol is split and introduced simultaneously into both the MC-ICP-MS and a quadrupole ICP-MS. The second method is based on optical emission spectroscopy using direct observation of the MC-ICP-MS plasma (LA-MC-ICP-MS|OES). Both methods are evaluated using international geological reference materials. Accurate and precise Si isotope ratios were obtained with an uncertainty typically better than 0.23‰, 2SD, δ(30)Si. With both methods major element concentrations (e.g., Na, Al, Si, Mg, Ca) can be simultaneously determined. However, LASS-ICP-MS is superior over LA-MC-ICP-MS|OES, which is limited by its lower sensitivity. Moreover, LASS-ICP-MS offers trace element analysis down to the µg g(-1)-range for more than 28 elements due to lower limits of detection, and with typical uncertainties better than 15%. For in situ simultaneous stable isotope measurement and chemical composition analysis LASS-ICP-MS in combination with MC-ICP-MS is the method of choice.

4.
Anal Chem ; 85(12): 5875-83, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23631627

ABSTRACT

Utilization of metallic engineered nanoparticles (ENP) is progressing rapidly; therefore, characterization of their most important properties, e.g., size/mass, elemental composition, and number concentration, is inevitable and currently uses a set of different techniques. In this work, a new setup is proposed for the quantitative size and mass determination of ENPs employing a monodisperse microdroplet generator (MDG) with transport efficiencies >95% coupled to an ICPMS. Two different MDG sample introduction configurations (vertical and horizontal) were tested, and their performance characteristics were evaluated. Due to a 5-fold reduced temporal jitter resulting in a shorter measurement time, the horizontal droplet introduction approach was used for the analysis of ENPs. With this setup, the quantification of Au, Ag, and CeO2 nanoparticles of different sizes and polydispersities was achieved. Results are compared to complementary techniques such as transmission electron microscopy (TEM) and asymmetric flow field flow fractionation (AF4), and advantages as well as limitations of this newly proposed technique are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...