Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36617067

ABSTRACT

In the future, sensors mounted on uncrewed aerial systems (UASs) will play a critical role in increasing both the speed and safety of structural inspections. Environmental and safety concerns make structural inspections and maintenance challenging when conducted using traditional methods, especially for large structures. The methods developed and tested in the laboratory need to be tested in the field on real-size structures to identify their potential for full implementation. This paper presents results from a full-scale field implementation of a novel sensor equipped with UAS to measure non-contact transverse displacement from a pedestrian bridge. To this end, the authors modified and upgraded a low-cost system that previously showed promise in laboratory and small-scale outdoor settings so that it could be tested on an in-service bridge. The upgraded UAS system uses a commodity drone platform, low-cost sensors including a laser range-finder, and a computer vision-based algorithm with the aim of measuring bridge displacements under load indicative of structural problems. The aim of this research is to alleviate the costs and challenges associated with sensor attachment in bridge inspections and deliver the first prototype of a UAS-based non-contact out-of-plane displacement measurement. This work helps to define the capabilities and limitations of the proposed low-cost system in obtaining non-contact transverse displacement in outdoor experiments.


Subject(s)
Algorithms
2.
Life (Basel) ; 11(6)2021 May 29.
Article in English | MEDLINE | ID: mdl-34072344

ABSTRACT

In the search for life beyond Earth, distinguishing the living from the non-living is paramount. However, this distinction is often elusive, as the origin of life is likely a stepwise evolutionary process, not a singular event. Regardless of the favored origin of life model, an inherent "grayness" blurs the theorized threshold defining life. Here, we explore the ambiguities between the biotic and the abiotic at the origin of life. The role of grayness extends into later transitions as well. By recognizing the limitations posed by grayness, life detection researchers will be better able to develop methods sensitive to prebiotic chemical systems and life with alternative biochemistries.

3.
Methods Mol Biol ; 1945: 33-42, 2019.
Article in English | MEDLINE | ID: mdl-30945241

ABSTRACT

RuleBuilder is a tool for drawing graphs that can be represented by the BioNetGen language (BNGL), which is used to formulate mathematical, rule-based models of biochemical systems. BNGL provides an intuitive plain text, or string, representation of such systems, which is based on a graphical formalism. Reactions are defined in terms of graph-rewriting rules that specify the necessary intrinsic properties of the reactants, a transformation, and a rate law. Rules also contain contextual constraints that restrict application of the rule. In some cases, the specification of contextual constraints can be verbose, making a rule difficult to read. RuleBuilder is designed to ease the task of reading and writing individual reaction rules or other BNGL patterns required for model formulation. The software assists in the reading of existing models by converting BNGL strings of interest into a graph-based representation composed of nodes and edges. RuleBuilder also enables the user to construct de novo a visual representation of BNGL strings using drawing tools available in its interface. As objects are added to the drawing canvas, the corresponding BNGL string is generated on the fly, and objects are similarly drawn on the fly as BNGL strings are entered into the application. RuleBuilder thus facilitates construction and interpretation of rule-based models.


Subject(s)
Computer Simulation , Models, Theoretical , Software , Algorithms , Models, Biological , Signal Transduction/genetics
4.
Front Immunol ; 9: 1571, 2018.
Article in English | MEDLINE | ID: mdl-30093900

ABSTRACT

T cells play a vital role in eliminating pathogenic infections. To activate, naïve T cells search lymph nodes (LNs) for dendritic cells (DCs). Positioning and movement of T cells in LNs is influenced by chemokines including CCL21 as well as multiple cell types and structures in the LNs. Previous studies have suggested that T cell positioning facilitates DC colocalization leading to T:DC interaction. Despite the influence chemical signals, cells, and structures can have on naïve T cell positioning, relatively few studies have used quantitative measures to directly compare T cell interactions with key cell types. Here, we use Pearson correlation coefficient (PCC) and normalized mutual information (NMI) to quantify the extent to which naïve T cells spatially associate with DCs, fibroblastic reticular cells (FRCs), and blood vessels in LNs. We measure spatial associations in physiologically relevant regions. We find that T cells are more spatially associated with FRCs than with their ultimate targets, DCs. We also investigated the role of a key motility chemokine receptor, CCR7, on T cell colocalization with DCs. We find that CCR7 deficiency does not decrease naïve T cell association with DCs, in fact, CCR7-/- T cells show slightly higher DC association compared with wild type T cells. By revealing these associations, we gain insights into factors that drive T cell localization, potentially affecting the timing of productive T:DC interactions and T cell activation.


Subject(s)
Dendritic Cells/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , T-Lymphocytes/immunology , Animals , Cell Communication/immunology , Chemokine CCL21/immunology , Cytokines/immunology , Data Interpretation, Statistical , Dendritic Cells/cytology , Fibroblasts/cytology , Humans , Lymph Nodes/cytology , Lymphocyte Activation , Mice , Models, Animal , Receptors, CCR7/immunology , T-Lymphocytes/cytology
5.
Nat Commun ; 8(1): 1010, 2017 10 18.
Article in English | MEDLINE | ID: mdl-29044117

ABSTRACT

Effector T cell migration through tissues can enable control of infection or mediate inflammatory damage. Nevertheless, the molecular mechanisms that regulate migration of effector T cells within the interstitial space of inflamed lungs are incompletely understood. Here, we show T cell migration in a mouse model of acute lung injury with two-photon imaging of intact lung tissue. Computational analysis indicates that T cells migrate with an intermittent mode, switching between confined and almost straight migration, guided by lung-associated vasculature. Rho-associated protein kinase (ROCK) is required for both high-speed migration and straight motion. By contrast, inhibition of Gαi signaling with pertussis toxin affects speed but not the intermittent migration of lung-infiltrating T cells. Computational modeling shows that an intermittent migration pattern balances both search area and the duration of contacts between T cells and target cells. These data identify that ROCK-dependent intermittent T cell migration regulates tissue-sampling during acute lung injury.


Subject(s)
Acute Lung Injury/metabolism , Cell Movement , T-Lymphocytes/metabolism , rho-Associated Kinases/metabolism , Acute Lung Injury/pathology , Algorithms , Animals , Cell Tracking/methods , Female , Lung/diagnostic imaging , Lung/metabolism , Lung/pathology , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton
6.
PLoS Comput Biol ; 12(3): e1004818, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26990103

ABSTRACT

Effective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated. Previous work suggests that T cell motion in the lymph node is similar to a Brownian random walk, however, no detailed analysis has definitively shown whether T cell movement is consistent with Brownian motion. Here, we provide a precise description of T cell motility in lymph nodes and a computational model that demonstrates how motility impacts T cell search efficiency. We find that both Brownian and Lévy walks fail to capture the complexity of T cell motion. Instead, T cell movement is better described as a correlated random walk with a heavy-tailed distribution of step lengths. Using computer simulations, we identify three distinct factors that contribute to increasing T cell search efficiency: 1) a lognormal distribution of step lengths, 2) motion that is directionally persistent over short time scales, and 3) heterogeneity in movement patterns. Furthermore, we show that T cells move differently in specific frequently visited locations that we call "hotspots" within lymph nodes, suggesting that T cells change their movement in response to the lymph node environment. Our results show that like foraging animals, T cells adapt to environmental cues, suggesting that adaption is a fundamental feature of biological search.


Subject(s)
Adaptive Immunity/immunology , Cell Movement/immunology , Lymph Nodes/immunology , Models, Immunological , Models, Statistical , T-Lymphocytes/immunology , Adaptation, Psychological/physiology , Animals , Computer Simulation , Humans , Immunity, Innate/immunology , Lymph Nodes/pathology
7.
PLoS One ; 7(7): e39427, 2012.
Article in English | MEDLINE | ID: mdl-22808035

ABSTRACT

Desert seed-harvester ants, genus Pogonomyrmex, are central place foragers that search for resources collectively. We quantify how seed harvesters exploit the spatial distribution of seeds to improve their rate of seed collection. We find that foraging rates are significantly influenced by the clumpiness of experimental seed baits. Colonies collected seeds from larger piles faster than randomly distributed seeds. We developed a method to compare foraging rates on clumped versus random seeds across three Pogonomyrmex species that differ substantially in forager population size. The increase in foraging rate when food was clumped in larger piles was indistinguishable across the three species, suggesting that species with larger colonies are no better than species with smaller colonies at collecting clumped seeds. These findings contradict the theoretical expectation that larger groups are more efficient at exploiting clumped resources, thus contributing to our understanding of the importance of the spatial distribution of food sources and colony size for communication and organization in social insects.


Subject(s)
Ants/physiology , Appetitive Behavior/physiology , Feeding Behavior/physiology , Social Behavior , Animals , Environment , Models, Biological , Spatial Analysis
8.
Biophys Chem ; 119(2): 205-11, 2006 Jan 20.
Article in English | MEDLINE | ID: mdl-16226368

ABSTRACT

The lateral organization of receptors on cell surfaces is critically important to their function; many receptors transmit transmembrane signals when redistributed into clusters, while the response of others is potentiated by their aggregation. Cell-cell contact can play a crucial role in receptor aggregation, even when the bonds between receptors on one cell and ligands on the other are monovalent. Monte Carlo simulations on a two-membrane model were carried out to determine whether weak enthalpic interactions among receptors in one membrane, and among ligands in another, can work synergistically to give large-scale clustering when the two membranes are brought into contact. The simulations give support to such a clustering mechanism. In addition, because clustering is a cooperative process akin to a phase separation, individual receptors and ligands may undergo repeated binding and unbinding while in a clustered "phase," and a single ligand could interact with multiple different receptor partners. The results suggest a resolution of the dichotomy between serial triggering and aggregation models of T cell activation.


Subject(s)
Monte Carlo Method , Receptor Aggregation , Receptors, Cell Surface/physiology , Cell Membrane/chemistry , Cell Membrane/physiology , Chemical Phenomena , Chemistry, Physical , Ligands , Models, Chemical , Protein Conformation , Receptors, Cell Surface/chemistry , Signal Transduction/physiology , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...