Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Planta ; 254(4): 65, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34487248

ABSTRACT

MAIN CONCLUSION: Enhanced levels of indole-3-acetic and raised auxin to cytokinin ratios in the stem base contribute to the positive acropetal gradient in rooting capacity of leafy single-node stem cuttings of rose. Cuttings excised from different nodal positions in stock plants can differ in subsequent adventitious root formation. We investigated the involvement of the auxin-cytokinin balance in position-affected rooting of Rosa hybrida. Leafy single-node stem cuttings of two rose cultivars were excised from top versus bottom positions. Concentrations of IAA and cytokinins were monitored in the bud region and the stem base during 8 days after planting using chromatography-MS/MS technology. The effects of nodal position and external supply of indole-butyric acid on rooting were analyzed. Most cytokinins increased particularly in the bud region and peaked at day two before the bud break was recorded. IAA increased in both tissues between day one and day eight. Top versus bottom cuttings revealed higher levels of isopentenyladenosine (IPR) in both tissues as well as higher concentrations of IAA and a higher ratio of IAA to cytokinins particularly in the stem base. The dynamic of hormones and correlation analysis indicated that the higher IPR contributed to the enhanced IAA in the bud region which served as auxin source for the auxin homeostasis in the stem base, where IAA determined the auxin-cytokinin balance. Bottom versus top cuttings produced lower numbers and lengths of roots, whereas this deficit was counterbalanced by auxin application. Further considering other studies of rose, it is concluded that cytokinin-, sucrose- and zinc-dependent auxin biosynthesis in the outgrowing buds is an important factor that contributes to the enhanced IAA levels and auxin/cytokinin ratios in the stem base of apical cuttings, promoting root induction.


Subject(s)
Cytokinins , Rosa , Homeostasis , Indoleacetic Acids , Plant Roots , Tandem Mass Spectrometry
2.
Waste Manag ; 59: 316-323, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27843024

ABSTRACT

The motives for landfill mining are various. In the last couple of years Enhanced Landfill Mining (ELFM) has become increasingly important in academic discourse and practical implementation. The main goal of ELFM is to recover as much material as possible from deposited municipal solid waste (MSW). In most of the projects carried out so far, the main focus has been set on coarse materials such as plastics, woods, papers and metals. These fractions can be separated easily by sieving in combination with magnetic separation. In these projects most of the fine materials, which might represent as much as 60-70% of the total mass of the landfill body, had to be deposited again. A further treatment aiming at reducing the masses of these fine materials, which are still a conglomerate of soil, calorific fractions, metals, minerals and residues, usually did not take place. One topic in the framework of the landfill mining project TÖNSLM, in addition to the separation of the calorific fraction and metals has been the treatment of fine materials with the goal to re-use these e.g. for construction purposes. This paper shows the results obtained after the wet mechanical treatment of fine MSW 10-60mm with a wet jigger. The physical principle of this process is the separation of the mass flux due to the different densities of the waste constituents. As a result, three main waste fluxes are obtained: Dense inert and dense fine fraction with a high content of minerals and a lightweight fraction with a high calorific value between 16 and 20MJ/kg. An additional positive effect of wet mechanical treatment is the removal of the finest particles from the surface of the waste material, thus increasing the quality of the generated waste fluxes. The mass fluxes of the different fractions and their qualities as well as possible recovery paths are described below. An economical and ecological consideration of the treatment of the fine materials does not take place within the framework of this feasibility study.


Subject(s)
Mining , Recycling/methods , Refuse Disposal/methods , Solid Waste/analysis , Waste Disposal Facilities , Waste Management/methods , Hot Temperature , Incineration , Metals , Plastics , Soil , Stress, Mechanical
3.
Waste Manag Res ; 32(1): 56-63, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24293068

ABSTRACT

Mechanical-biological treatment (MBT) techniques have been used to reduce the emission potential of waste before placement in landfills for a couple of years, especially in Europe. The main focus of MBT is on the reduction of native organic substances and not on nitrogen compounds. As a result, the concentrations of organic substances in leachate from MBT landfills are considerably reduced in comparison to leachates from municipal solid waste landfills, while the ammonia nitrogen concentrations remain at a high level. From the stabilization of old landfills it is well known that recirculation of leachate and supplementary aeration can reduce emissions to an acceptable level in a comparatively short time. In a series of laboratory-scale tests the efficiency of this technique for MBT residues was investigated under different boundary conditions. While the effect of leachate recirculation is also well known for MBT residues, the additional aeration has so far not been investigated. The results show that this technique has only a limited influence on the reduction of organic carbon compounds. In view of nitrogen compounds, only the additional aeration during recirculation shows a strong effect on the quality of leachate, in which the concentrations of ammonium and total nitrogen are reduced by more than 90%. The results indicate that by using simple techniques the long-term emission behavior of MBT residues can be quickly reduced to an acceptable level.


Subject(s)
Nitrogen/isolation & purification , Refuse Disposal/methods , Water Pollutants, Chemical/chemistry , Ammonia , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Carbon , Equipment Design , Nitrates/analysis
4.
Waste Manag ; 33(10): 2099-107, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23453435

ABSTRACT

Mechanical biological treatment (MBT) is an effective technique, which removes organic carbon from municipal solid waste (MSW) prior to deposition. Thereby, methane (CH4) production in the landfill is strongly mitigated. However, direct measurements of greenhouse gas emissions from full-scale MBT landfills have not been conducted so far. Thus, CH4 and nitrous oxide (N2O) emissions from a German MBT landfill in operation as well as their concentrations in the landfill gas (LFG) were measured. High N2O emissions of 20-200gCO2eq.m(-2)h(-1) magnitude (up to 428mgNm(-2)h(-1)) were observed within 20m of the working face. CH4 emissions were highest at the landfill zone located at a distance of 30-40m from the working face, where they reached about 10gCO2eq.m(-2)h(-1). The MBT material in this area has been deposited several weeks earlier. Maximum LFG concentration for N2O was 24.000ppmv in material below the emission hotspot. At a depth of 50cm from the landfill surface a strong negative correlation between N2O and CH4 concentrations was observed. From this and from the distribution pattern of extractable ammonium, nitrite, and nitrate it has been concluded that strong N2O production is associated with nitrification activity and the occurrence of nitrite and nitrate, which is initiated by oxygen input during waste deposition. Therefore, CH4 mitigation measures, which often employ aeration, could result in a net increase of GHG emissions due to increased N2O emissions, especially at MBT landfills.


Subject(s)
Methane/analysis , Nitrous Oxide/analysis , Refuse Disposal/methods , Waste Disposal Facilities , Germany , Nitrates/metabolism , Nitrification , Nitrites/metabolism , Nitrogen/isolation & purification , Oxygen/metabolism , Solid Waste/analysis
5.
Waste Manag Res ; 30(1): 49-55, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21030425

ABSTRACT

The measurement of leachate quality and quantity is an essential part of the monitoring of landfills in the different phases during their lifespan. These measurements allow the evaluation of the decomposition processes in the landfill and the efficiency of technical installations for the reduction of the leachate generation. Normally the measurements are made at the outlet of larger sections of the landfill or at the overall landfill. An identification of smaller parts with different biological or hydraulic behaviour within the landfill section is not possible in that case. In the framework of a long-term research project concerning the monitoring of landfills, different devices for small-scale identification of the leachate discharge were developed at the Technical University of Braunschweig. The device allows a measurement of the leachate discharge inside a single drainage pipe having a length up to 375 m. The measurements showed the influence of changes in operation. It was found that the discharge in the pipes and the efficiency of the drainage system was strongly influenced by deformations and torsion of the high-density polyethylene pipes and unequal settlements of the subsoil. The discharge of leachate in the drainage system was, as expected, very non-uniform and in parts the leachate was not flowing inside the pipes, but rather in the surrounding gravel layer. Furthermore, large differences in leachate quality may occur, whereas the differences in discharge volume are small. With the developed system it is possible to control the efficiency and the functioning of top cover systems for landfills.


Subject(s)
Environmental Monitoring/instrumentation , Refuse Disposal/methods , Water Pollutants, Chemical/analysis , Biodegradation, Environmental , Equipment Design , Polyethylene , Refuse Disposal/instrumentation , Soil
6.
Waste Manag ; 31(4): 644-8, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21145722

ABSTRACT

In order to reduce the ecological impact of resource exploitation, the EU calls for sustainable options to increase the efficiency and productivity of the utilization of natural resources. This target can only be achieved by considering resource recovery from waste comprehensively. However, waste management measures have to be investigated critically and all aspects of substance-related recycling and energy recovery have to be carefully balanced. This article compares recovery methods for selected waste fractions with regard to their energy efficiency. Whether material recycling or energy recovery is the most energy efficient solution, is a question of particular relevance with regard to the following waste fractions: paper and cardboard, plastics and biowaste and also indirectly metals. For the described material categories material recycling has advantages compared to energy recovery. In accordance with the improved energy efficiency of substance opposed to energy recovery, substance-related recycling causes lower emissions of green house gases. For the fractions paper and cardboard, plastics, biowaste and metals it becomes apparent, that intensification of the separate collection systems in combination with a more intensive use of sorting technologies can increase the extent of material recycling. Collection and sorting systems must be coordinated. The objective of the overall system must be to achieve an optimum of the highest possible recovery rates in combination with a high quality of recyclables. The energy efficiency of substance related recycling of biowaste can be increased by intensifying the use of anaerobic technologies. In order to increase the energy efficiency of the overall system, the energy efficiencies of energy recovery plants must be increased so that the waste unsuitable for substance recycling is recycled or treated with the highest possible energy yield.


Subject(s)
Conservation of Natural Resources/methods , Refuse Disposal/methods , Anaerobiosis , Conservation of Natural Resources/economics , Efficiency , Metals , Paper , Plastics , Refuse Disposal/economics , Waste Products/analysis , Waste Products/classification
7.
Waste Manag ; 27(1): 30-43, 2007.
Article in English | MEDLINE | ID: mdl-16860554

ABSTRACT

Organic waste and municipal solid waste usually contain considerable amounts of different nitrogen compounds, which may inhibit anaerobic degradation processes and cause problems in the downstream and peripheral devices. This refers particularly to the different process stages of anaerobic digestion, to wastewater treatment, and to exhaust air treatment. Neither the knowledge about nitrogen problems nor the technologies for elimination of nitrogen compounds from the wastewater or the exhaust air of anaerobic digestion can be regarded as state-of-the-art. Most of the technologies in question have already been applied in other areas, but are barely tested for application in anaerobic digestion plants. The few performance data and experiences at hand were mainly derived from pilot and demonstration facilities. In this paper, the problem of nitrogen will be discussed in detail according to the separate problem fields based on the authors' experience, as well as on the basis of a review of the relevant literature. Furthermore, possible solutions will be proposed and the need for further research and development will be formulated.


Subject(s)
Bacteria, Anaerobic/physiology , Cities , Nitrogen/physiology , Refuse Disposal/instrumentation , Waste Management/instrumentation
8.
Waste Manag ; 25(8): 799-810, 2005.
Article in English | MEDLINE | ID: mdl-16125060

ABSTRACT

This paper considers selected efficiency rates and process data of aerobic and anaerobic procedures for the treatment of municipal solid waste and residual waste. Data are exclusively related to mechanical-biological treatment (MBT) procedures for generating waste appropriate for landfilling. The following aspects are regarded: general framework conditions for the application of MBT, efficiency of decomposition and of stabilisation, air and water emissions and energy balances. The presented data can be used for more efficient planning. In comparison to aerobic processes, anaerobic digestion can be ecologically advantageous, particularly with regard to exhaust emissions and energy balances. On the other hand, the wastewater emissions and the wastewater treatment required must be regarded as disadvantageous. Due to the relatively short period of operational history of most anaerobic processes for mechanical-biological waste treatment and thus limited experiences, operational reliability of anaerobic processes is slightly lower. Extensive biological stability of the treated waste for low-emission disposal cannot be reached by anaerobic digestion alone, but only in combination with additional aerobic post-treatment. In connection with the utilisation of renewable energies and the rising relevancy of climate protection, it can be affirmed that anaerobic digestion for the treatment of municipal solid waste has a high potential for further development.


Subject(s)
Bacteria, Aerobic/metabolism , Bacteria, Anaerobic/metabolism , Refuse Disposal/methods , Air Pollutants/analysis , Biodegradation, Environmental , Conservation of Energy Resources , Environmental Pollution/prevention & control , Waste Disposal, Fluid , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL