Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 223(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38709216

ABSTRACT

Autophagy is an essential degradation program required for cell homeostasis. Among its functions is the engulfment and destruction of cytosolic pathogens, termed xenophagy. Not surprisingly, many pathogens use various strategies to circumvent or co-opt autophagic degradation. For poxviruses, it is known that infection activates autophagy, which however is not required for successful replication. Even though these complex viruses replicate exclusively in the cytoplasm, autophagy-mediated control of poxvirus infection has not been extensively explored. Using the prototypic poxvirus, vaccinia virus (VACV), we show that overexpression of the xenophagy receptors p62, NDP52, and Tax1Bp1 restricts poxvirus infection. While NDP52 and Tax1Bp1 were degraded, p62 initially targeted cytoplasmic virions before being shunted to the nucleus. Nuclear translocation of p62 was dependent upon p62 NLS2 and correlated with VACV kinase mediated phosphorylation of p62 T269/S272. This suggests that VACV targets p62 during the early stages of infection to avoid destruction and further implies that poxviruses exhibit multi-layered control of autophagy to facilitate cytoplasmic replication.


Subject(s)
Autophagy , Cell Nucleus , Sequestosome-1 Protein , Vaccinia virus , Humans , Active Transport, Cell Nucleus , Cell Nucleus/metabolism , Cell Nucleus/virology , HEK293 Cells , HeLa Cells , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics , Vaccinia/metabolism , Vaccinia/virology , Vaccinia/genetics , Vaccinia virus/metabolism , Vaccinia virus/genetics , Virus Replication
2.
mSphere ; 9(5): e0010924, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38578105

ABSTRACT

The two species that account for most cases of Acinetobacter-associated bacteremia in the United Kingdom are Acinetobacter lwoffii, often a commensal but also an emerging pathogen, and Acinetobacter baumannii, a well-known antibiotic-resistant species. While these species both cause similar types of human infection and occupy the same niche, A. lwoffii (unlike A. baumannii) has thus far remained susceptible to antibiotics. Comparatively little is known about the biology of A. lwoffii, and this is the largest study on it conducted to date, providing valuable insights into its behaviour and potential threat to human health. This study aimed to explain the antibiotic susceptibility, virulence, and fundamental biological differences between these two species. The relative susceptibility of A. lwoffii was explained as it encoded fewer antibiotic resistance and efflux pump genes than A. baumannii (9 and 30, respectively). While both species had markers of horizontal gene transfer, A. lwoffii encoded more DNA defense systems and harbored a far more restricted range of plasmids. Furthermore, A. lwoffii displayed a reduced ability to select for antibiotic resistance mutations, form biofilm, and infect both in vivo and in in vitro models of infection. This study suggests that the emerging pathogen A. lwoffii has remained susceptible to antibiotics because mechanisms exist to make it highly selective about the DNA it acquires, and we hypothesize that the fact that it only harbors a single RND system restricts the ability to select for resistance mutations. This provides valuable insights into how development of resistance can be constrained in Gram-negative bacteria. IMPORTANCE: Acinetobacter lwoffii is often a harmless commensal but is also an emerging pathogen and is the most common cause of Acinetobacter-derived bloodstream infections in England and Wales. In contrast to the well-studied and often highly drug-resistant A. baumannii, A. lwoffii has remained susceptible to antibiotics. This study explains why this organism has not evolved resistance to antibiotics. These new insights are important to understand why and how some species develop antibiotic resistance, while others do not, and could inform future novel treatment strategies.


Subject(s)
Acinetobacter Infections , Acinetobacter , Anti-Bacterial Agents , Biofilms , Microbial Sensitivity Tests , Acinetobacter/genetics , Acinetobacter/drug effects , Acinetobacter/pathogenicity , Virulence/genetics , Acinetobacter Infections/microbiology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Biofilms/growth & development , Animals , Humans , Drug Resistance, Bacterial/genetics , Acinetobacter baumannii/genetics , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/pathogenicity , Mice , Gene Transfer, Horizontal , United Kingdom , Female , Plasmids/genetics
3.
mSphere ; 8(6): e0051123, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37975677

ABSTRACT

IMPORTANCE: Toxoplasma gondii (Tg) is a ubiquitous parasitic pathogen, infecting about one-third of the global population. Tg is controlled in immunocompetent people by mechanisms that are not fully understood. Tg infection drives the production of the inflammatory cytokine interferon gamma (IFNγ), which upregulates intracellular anti-pathogen defense pathways. In this study, we describe host proteins p97/VCP, UBXD1, and ANKRD13A that control Tg at the parasitophorous vacuole (PV) in IFNγ-stimulated endothelial cells. p97/VCP is an ATPase that interacts with a network of cofactors and is active in a wide range of ubiquitin-dependent cellular processes. We demonstrate that PV ubiquitination is a pre-requisite for recruitment of these host defense proteins, and their deposition directs Tg PVs to acidification in endothelial cells. We show that p97/VCP universally targets PVs in human cells and restricts Tg in different human cell types. Overall, these findings reveal new players of intracellular host defense of a vacuolated pathogen.


Subject(s)
Parasites , Toxoplasma , Animals , Humans , Toxoplasma/metabolism , Interferons/metabolism , Vacuoles/metabolism , Endothelial Cells , Interferon-gamma , Valosin Containing Protein/metabolism
4.
Science ; 382(6666): eadg2253, 2023 10 06.
Article in English | MEDLINE | ID: mdl-37797010

ABSTRACT

Disruption of cellular activities by pathogen virulence factors can trigger innate immune responses. Interferon-γ (IFN-γ)-inducible antimicrobial factors, such as the guanylate binding proteins (GBPs), promote cell-intrinsic defense by attacking intracellular pathogens and by inducing programmed cell death. Working in human macrophages, we discovered that GBP1 expression in the absence of IFN-γ killed the cells and induced Golgi fragmentation. IFN-γ exposure improved macrophage survival through the activity of the kinase PIM1. PIM1 phosphorylated GBP1, leading to its sequestration by 14-3-3σ, which thereby prevented GBP1 membrane association. During Toxoplasma gondii infection, the virulence protein TgIST interfered with IFN-γ signaling and depleted PIM1, thereby increasing GBP1 activity. Although infected cells can restrain pathogens in a GBP1-dependent manner, this mechanism can protect uninfected bystander cells. Thus, PIM1 can provide a bait for pathogen virulence factors, guarding the integrity of IFN-γ signaling.


Subject(s)
GTP-Binding Proteins , Host-Pathogen Interactions , Immunity, Innate , Interferon-gamma , Proto-Oncogene Proteins c-pim-1 , Toxoplasma , Toxoplasmosis , Humans , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Interferon-gamma/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism , Toxoplasmosis/immunology , Virulence Factors/metabolism , Macrophages/immunology , 14-3-3 Proteins/metabolism , Host-Pathogen Interactions/immunology
5.
Nat Commun ; 14(1): 4895, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37580395

ABSTRACT

The opportunistic fungal pathogen Cryptococcus neoformans causes lethal infections in immunocompromised patients. Macrophages are central to the host response to cryptococci; however, it is unclear how C. neoformans is recognised and phagocytosed by macrophages. Here we investigate the role of TLR4 in the non-opsonic phagocytosis of C. neoformans. We find that loss of TLR4 function unexpectedly increases phagocytosis of non-opsonised cryptococci by murine and human macrophages. The increased phagocytosis observed in Tlr4-/- cells was dampened by pre-treatment of macrophages with oxidised-LDL, a known ligand of scavenger receptors. The scavenger receptor, macrophage scavenger receptor 1 (MSR1) (also known as SR-A1 or CD204) was upregulated in Tlr4-/- macrophages. Genetic ablation of MSR1 resulted in a 75% decrease in phagocytosis of non-opsonised cryptococci, strongly suggesting that it is a key non-opsonic receptor for this pathogen. We go on to show that MSR1-mediated uptake likely involves the formation of a multimolecular signalling complex involving FcγR leading to SYK, PI3K, p38 and ERK1/2 activation to drive actin remodelling and phagocytosis. Altogether, our data indicate a hitherto unidentified role for TLR4/MSR1 crosstalk in the non-opsonic phagocytosis of C. neoformans.


Subject(s)
Cryptococcosis , Phagocytosis , Scavenger Receptors, Class A , Toll-Like Receptor 4 , Animals , Humans , Mice , Cryptococcus neoformans , Macrophages/microbiology , Toll-Like Receptor 4/genetics , Scavenger Receptors, Class A/metabolism
6.
Infect Immun ; 91(9): e0006623, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37594276

ABSTRACT

The genus Prototheca is an extremely unusual group of achlorophyllic, obligately heterotrophic algae. Six species have been identified as pathogens of vertebrates, including cattle and humans. In cattle, P. bovis is the main infectious pathogen and is associated with bovine mastitis. In contrast, human infections typically involve P. wickerhamii and are associated with a spectrum of varying clinical presentations. Prototheca spp. enter the host from the environment and are therefore likely to be initially recognized by cells of the innate immune system. However, little is known about the nature of the interaction between Prototheca spp. and host phagocytes. In the present study, we adopt a live-cell imaging approach to investigate these interactions over time. Using environmental and clinical strains, we show that P. bovis cells are readily internalized and processed by macrophages, whereas these immune cells struggle to internalize P. wickerhamii. Serum opsonization of P. wickerhamii only marginally improves phagocytosis, suggesting that this species (but not P. bovis) may have evolved mechanisms to evade phagocytosis. Furthermore, we show that inhibition of the kinases Syk or PI3K, which are both critical for innate immune signaling, drastically reduces the uptake of P. bovis. Finally, we show that genetic ablation of MyD88, a signaling adaptor critical for Toll-like receptor signaling, has little impact on uptake but significantly prolongs phagosome maturation once P. bovis is internalized. Together, our data suggest that these two pathogenic Prototheca spp. have very different host-pathogen interactions which have potential therapeutic implications for the treatment of human and animal disease.


Subject(s)
Prototheca , Humans , Female , Animals , Cattle , Prototheca/genetics , Phagocytosis , Macrophages , Phagocytes , Signal Transduction
7.
Curr Opin Immunol ; 84: 102373, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536111

ABSTRACT

Cell-intrinsic defense is an essential part of the immune response against intracellular pathogens regulated by cytokine-induced proteins and pathways. One of the most upregulated families of proteins in this defense system are the guanylate-binding proteins (GBPs), large GTPases of the dynamin family, induced in response to interferon gamma. Human GBPs (hGBPs) exert their antimicrobial activity through detection of pathogen-associated molecular patterns and/or damage-associated molecular patterns to execute control mechanisms directed at the pathogen itself as well as the vacuolar compartments in which it resides. Consequently, hGBPs are also inducers of canonical and noncanonical inflammasome responses leading to host cell death. The mechanisms are both cell-type and pathogen-dependent with hGBP1 acting as a pioneer sensor for intracellular invaders. This review focuses on the most recent functional roles of hGBPs in pathways of pathogen detection, destruction, and host cell death induction.

8.
Stem Cell Reports ; 18(5): 1090-1106, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37163979

ABSTRACT

Mitochondrial dysfunction involving mitochondria-associated ER membrane (MAM) dysregulation is implicated in the pathogenesis of late-onset neurodegenerative diseases, but understanding is limited for rare early-onset conditions. Loss of the MAM-resident protein WFS1 causes Wolfram syndrome (WS), a rare early-onset neurodegenerative disease that has been linked to mitochondrial abnormalities. Here we demonstrate mitochondrial dysfunction in human induced pluripotent stem cell-derived neuronal cells of WS patients. VDAC1 is identified to interact with WFS1, whereas loss of this interaction in WS cells could compromise mitochondrial function. Restoring WFS1 levels in WS cells reinstates WFS1-VDAC1 interaction, which correlates with an increase in MAMs and mitochondrial network that could positively affect mitochondrial function. Genetic rescue by WFS1 overexpression or pharmacological agents modulating mitochondrial function improves the viability and bioenergetics of WS neurons. Our data implicate a role of WFS1 in regulating mitochondrial functionality and highlight a therapeutic intervention for WS and related rare diseases with mitochondrial defects.


Subject(s)
Induced Pluripotent Stem Cells , Neurodegenerative Diseases , Wolfram Syndrome , Humans , Wolfram Syndrome/genetics , Wolfram Syndrome/metabolism , Induced Pluripotent Stem Cells/metabolism , Neurodegenerative Diseases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neurons/metabolism , Mitochondria/metabolism , Mutation
9.
Cell Rep ; 42(5): 112372, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37086404

ABSTRACT

Autophagy is a homeostatic process critical for cellular survival, and its malfunction is implicated in human diseases including neurodegeneration. Loss of autophagy contributes to cytotoxicity and tissue degeneration, but the mechanistic understanding of this phenomenon remains elusive. Here, we generated autophagy-deficient (ATG5-/-) human embryonic stem cells (hESCs), from which we established a human neuronal platform to investigate how loss of autophagy affects neuronal survival. ATG5-/- neurons exhibit basal cytotoxicity accompanied by metabolic defects. Depletion of nicotinamide adenine dinucleotide (NAD) due to hyperactivation of NAD-consuming enzymes is found to trigger cell death via mitochondrial depolarization in ATG5-/- neurons. Boosting intracellular NAD levels improves cell viability by restoring mitochondrial bioenergetics and proteostasis in ATG5-/- neurons. Our findings elucidate a mechanistic link between autophagy deficiency and neuronal cell death that can be targeted for therapeutic interventions in neurodegenerative and lysosomal storage diseases associated with autophagic defect.


Subject(s)
NAD , Nicotinamide Mononucleotide , Humans , NAD/metabolism , Nicotinamide Mononucleotide/metabolism , Neurons/metabolism , Mitochondria/metabolism , Autophagy , Niacinamide/metabolism
10.
Cell Rep Methods ; 2(8): 100274, 2022 08 22.
Article in English | MEDLINE | ID: mdl-36046624

ABSTRACT

Cellular barcoding techniques are powerful tools to understand microbial pathogenesis. However, barcoding strategies have not been broadly applied to protozoan parasites, which have unique genomic structures and virulence strategies compared with viral and bacterial pathogens. Here, we present a CRISPR-based method to barcode protozoa, which we successfully apply to Toxoplasma gondii and Trypanosoma brucei. Using libraries of barcoded T. gondii, we evaluate shifts in the population structure from acute to chronic infection of mice. Contrary to expectation, most barcodes were present in the brain one month post-intraperitoneal infection in both inbred CBA/J and outbred Swiss mice. Although parasite cyst number and barcode diversity declined over time, barcodes representing a minor fraction of the inoculum could become a dominant population in the brain by three months post-infection. These data establish a cellular barcoding approach for protozoa and evidence that the blood-brain barrier is not a major bottleneck to colonization by T. gondii.


Subject(s)
Toxoplasma , Mice , Animals , Toxoplasma/genetics , Protozoan Proteins/genetics , Mice, Inbred CBA , Virulence , Brain/metabolism
11.
Pathog Dis ; 79(9)2022 01 07.
Article in English | MEDLINE | ID: mdl-34931666

ABSTRACT

Human guanylate binding proteins (GBPs) are key players of interferon-gamma (IFNγ)-induced cell intrinsic defense mechanisms targeting intracellular pathogens. In this study, we combine the well-established Toxoplasmagondii infection model with three in vitro macrophage culture systems to delineate the contribution of individual GBP family members to control this apicomplexan parasite. Use of high-throughput imaging assays and genome engineering allowed us to define a role for GBP1, 2 and 5 in parasite infection control. While GBP1 performs a pathogen-proximal, parasiticidal and growth-restricting function through accumulation at the parasitophorous vacuole of intracellular Toxoplasma, GBP2 and GBP5 perform a pathogen-distal, growth-restricting role. We further find that mutants of the GTPase or isoprenylation site of GBP1/2/5 affect their normal function in Toxoplasma control by leading to mis-localization of the proteins.


Subject(s)
GTP-Binding Proteins/metabolism , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Toxoplasma/immunology , Toxoplasmosis/immunology , Toxoplasmosis/metabolism , Toxoplasmosis/parasitology , Biomarkers , Disease Susceptibility , Host-Parasite Interactions , Humans
12.
J Exp Med ; 218(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34670268

ABSTRACT

The intracellular parasite Toxoplasma gondii has long provided a tractable experimental system to investigate how the immune system deals with intracellular infections. This review highlights the advances in defining how this organism was first detected and the studies with T. gondii that contribute to our understanding of how the cytokine IFN-γ promotes control of vacuolar pathogens. In addition, the genetic tractability of this eukaryote organism has provided the foundation for studies into the diverse strategies that pathogens use to evade antimicrobial responses and now provides the opportunity to study the basis for latency. Thus, T. gondii remains a clinically relevant organism whose evolving interactions with the host immune system continue to teach lessons broadly relevant to host-pathogen interactions.


Subject(s)
Host-Pathogen Interactions/immunology , Toxoplasma/immunology , Animals , Communicable Disease Control/methods , Cytokines/immunology , Humans , Interferon-gamma/immunology , Vacuoles/immunology , Vacuoles/parasitology
13.
Life Sci Alliance ; 4(8)2021 08.
Article in English | MEDLINE | ID: mdl-34145027

ABSTRACT

Poxvirus egress is a complex process whereby cytoplasmic single membrane-bound virions are wrapped in a cell-derived double membrane. These triple-membrane particles, termed intracellular enveloped virions (IEVs), are released from infected cells by fusion. Whereas the wrapping double membrane is thought to be derived from virus-modified trans-Golgi or early endosomal cisternae, the cellular factors that regulate virus wrapping remain largely undefined. To identify cell factors required for this process the prototypic poxvirus, vaccinia virus (VACV), was subjected to an RNAi screen directed against cellular membrane-trafficking proteins. Focusing on the endosomal sorting complexes required for transport (ESCRT), we demonstrate that ESCRT-III and VPS4 are required for packaging of virus into multivesicular bodies (MVBs). EM-based characterization of MVB-IEVs showed that they account for half of IEV production indicating that MVBs are a second major source of VACV wrapping membrane. These data support a model whereby, in addition to cisternae-based wrapping, VACV hijacks ESCRT-mediated MVB formation to facilitate virus egress and spread.


Subject(s)
ATPases Associated with Diverse Cellular Activities/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Vaccinia virus/pathogenicity , Vacuolar Proton-Translocating ATPases/metabolism , Cell Line , Endosomes/virology , HeLa Cells , Humans , THP-1 Cells , Vaccinia virus/genetics , Viral Genome Packaging , Virus Release
14.
Cell Microbiol ; 23(7): e13349, 2021 07.
Article in English | MEDLINE | ID: mdl-33930228

ABSTRACT

To study the dynamics of infection processes, it is common to manually enumerate imaging-based infection assays. However, manual counting of events from imaging data is biased, error-prone and a laborious task. We recently presented HRMAn (Host Response to Microbe Analysis), an automated image analysis program using state-of-the-art machine learning and artificial intelligence algorithms to analyse pathogen growth and host defence behaviour. With HRMAn, we can quantify intracellular infection by pathogens such as Toxoplasma gondii and Salmonella in a variety of cell types in an unbiased and highly reproducible manner, measuring multiple parameters including pathogen growth, pathogen killing and activation of host cell defences. Since HRMAn is based on the KNIME Analytics platform, it can easily be adapted to work with other pathogens and produce more readouts from quantitative imaging data. Here we showcase improvements to HRMAn resulting in the release of HRMAn 2.0 and new applications of HRMAn 2.0 for the analysis of host-pathogen interactions using the established pathogen T. gondii and further extend it for use with the bacterial pathogen Chlamydia trachomatis and the fungal pathogen Cryptococcus neoformans.


Subject(s)
Chlamydia Infections/diagnostic imaging , Cryptococcosis/diagnostic imaging , Host-Pathogen Interactions , Image Processing, Computer-Assisted/methods , Toxoplasmosis/diagnostic imaging , Artificial Intelligence , Cell Line, Tumor , Humans
15.
mSphere ; 5(5)2020 09 09.
Article in English | MEDLINE | ID: mdl-32907956

ABSTRACT

The use of deep neural networks (DNNs) for analysis of complex biomedical images shows great promise but is hampered by a lack of large verified data sets for rapid network evolution. Here, we present a novel strategy, termed "mimicry embedding," for rapid application of neural network architecture-based analysis of pathogen imaging data sets. Embedding of a novel host-pathogen data set, such that it mimics a verified data set, enables efficient deep learning using high expressive capacity architectures and seamless architecture switching. We applied this strategy across various microbiological phenotypes, from superresolved viruses to in vitro and in vivo parasitic infections. We demonstrate that mimicry embedding enables efficient and accurate analysis of two- and three-dimensional microscopy data sets. The results suggest that transfer learning from pretrained network data may be a powerful general strategy for analysis of heterogeneous pathogen fluorescence imaging data sets.IMPORTANCE In biology, the use of deep neural networks (DNNs) for analysis of pathogen infection is hampered by a lack of large verified data sets needed for rapid network evolution. Artificial neural networks detect handwritten digits with high precision thanks to large data sets, such as MNIST, that allow nearly unlimited training. Here, we developed a novel strategy we call mimicry embedding, which allows artificial intelligence (AI)-based analysis of variable pathogen-host data sets. We show that deep learning can be used to detect and classify single pathogens based on small differences.


Subject(s)
Deep Learning , Host-Pathogen Interactions , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Animals , Artificial Intelligence , Microscopy/methods , Toxoplasma/pathogenicity , Vaccinia virus/pathogenicity , Zebrafish
16.
Cell Rep ; 32(6): 108008, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32783936

ABSTRACT

Interferon-inducible guanylate-binding proteins (GBPs) promote cell-intrinsic defense through host cell death. GBPs target pathogens and pathogen-containing vacuoles and promote membrane disruption for release of microbial molecules that activate inflammasomes. GBP1 mediates pyroptosis or atypical apoptosis of Salmonella Typhimurium (STm)- or Toxoplasma gondii (Tg)- infected human macrophages, respectively. The pathogen-proximal detection-mechanisms of GBP1 remain poorly understood, as humans lack functional immunity-related GTPases (IRGs) that assist murine Gbps. Here, we establish that GBP1 promotes the lysis of Tg-containing vacuoles and parasite plasma membranes, releasing Tg-DNA. In contrast, we show GBP1 targets cytosolic STm and recruits caspase-4 to the bacterial surface for its activation by lipopolysaccharide (LPS), but does not contribute to bacterial vacuole escape. Caspase-1 cleaves and inactivates GBP1, and a cleavage-deficient GBP1D192E mutant increases caspase-4-driven pyroptosis due to the absence of feedback inhibition. Our studies elucidate microbe-specific roles of GBP1 in infection detection and its triggering of the assembly of divergent caspase signaling platforms.


Subject(s)
Caspases/immunology , GTP-Binding Proteins/immunology , Salmonella typhimurium/immunology , Toxoplasma/immunology , Cell Death/immunology , HEK293 Cells , Humans , Inflammasomes/immunology , Interferon-gamma/pharmacology , Ligands , Salmonella Infections/immunology , Salmonella Infections/microbiology , THP-1 Cells , Toxoplasma/genetics , Toxoplasmosis/immunology , Toxoplasmosis/microbiology , Vacuoles/immunology
17.
Dis Model Mech ; 13(7)2020 07 20.
Article in English | MEDLINE | ID: mdl-32461265

ABSTRACT

Toxoplasma gondii is an obligate intracellular parasite capable of invading any nucleated cell. Three main clonal lineages (type I, II, III) exist and murine models have driven the understanding of general and strain-specific immune mechanisms underlying Toxoplasma infection. However, murine models are limited for studying parasite-leukocyte interactions in vivo, and discrepancies exist between cellular immune responses observed in mouse versus human cells. Here, we developed a zebrafish infection model to study the innate immune response to Toxoplasma in vivo By infecting the zebrafish hindbrain ventricle, and using high-resolution microscopy techniques coupled with computer vision-driven automated image analysis, we reveal that Toxoplasma invades brain cells and replicates inside a parasitophorous vacuole to which type I and III parasites recruit host cell mitochondria. We also show that type II and III strains maintain a higher infectious burden than type I strains. To understand how parasites are cleared in vivo, we further analyzed Toxoplasma-macrophage interactions using time-lapse microscopy and three-dimensional correlative light and electron microscopy (3D CLEM). Time-lapse microscopy revealed that macrophages are recruited to the infection site and play a key role in Toxoplasma control. High-resolution 3D CLEM revealed parasitophorous vacuole breakage in brain cells and macrophages in vivo, suggesting that cell-intrinsic mechanisms may be used to destroy the intracellular niche of tachyzoites. Together, our results demonstrate in vivo control of Toxoplasma by macrophages, and highlight the possibility that zebrafish may be further exploited as a novel model system for discoveries within the field of parasite immunity.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Macrophages/parasitology , Rhombencephalon/microbiology , Toxoplasma/growth & development , Toxoplasmosis, Animal/parasitology , Toxoplasmosis, Cerebral/parasitology , Zebrafish/parasitology , Animals , Disease Models, Animal , Host-Parasite Interactions , Macrophages/immunology , Macrophages/ultrastructure , Microscopy, Confocal , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Microscopy, Video , Parasite Load , Rhombencephalon/immunology , Rhombencephalon/ultrastructure , Time Factors , Toxoplasma/immunology , Toxoplasma/ultrastructure , Toxoplasmosis, Animal/immunology , Toxoplasmosis, Animal/pathology , Toxoplasmosis, Cerebral/immunology , Toxoplasmosis, Cerebral/pathology
18.
Nature ; 579(7797): 34-35, 2020 03.
Article in English | MEDLINE | ID: mdl-32123364
19.
Methods Mol Biol ; 2071: 411-433, 2020.
Article in English | MEDLINE | ID: mdl-31758464

ABSTRACT

Research on Toxoplasma gondii and its interplay with the host is often performed using fluorescence microscopy-based imaging experiments combined with manual quantification of acquired images. We present here an accurate and unbiased quantification method for host-pathogen interactions. We describe how to plan experiments and prepare, stain and image infected specimens and analyze them with the program HRMAn (Host Response to Microbe Analysis). HRMAn is a high-content image analysis method based on KNIME Analytics Platform. Users of this guide will be able to perform infection studies in high-throughput volume and to a greater level of detail. Relying on cutting edge machine learning algorithms, HRMAn can be trained and tailored to many experimental settings and questions.


Subject(s)
Toxoplasma/pathogenicity , Algorithms , Artificial Intelligence , Host-Pathogen Interactions , Machine Learning , Microscopy, Fluorescence/methods
20.
PLoS Pathog ; 15(12): e1008097, 2019 12.
Article in English | MEDLINE | ID: mdl-31830133
SELECTION OF CITATIONS
SEARCH DETAIL
...