Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Geosci ; 13(9): 616-620, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32952606

ABSTRACT

Ocean-driven basal melting of Antarctica's floating ice shelves accounts for about half of their mass loss in steady-state, where gains in ice shelf mass are balanced by losses. Ice shelf thickness changes driven by varying basal melt rates modulate mass loss from the grounded ice sheet and its contribution to sea level, and the changing meltwater fluxes influence climate processes in the Southern Ocean. Existing continent-wide melt rate datasets have no temporal variability, introducing uncertainties in sea level and climate projections. Here, we combine surface height data from satellite radar altimeters with satellite-derived ice velocities and a new model of firn-layer evolution to generate a high-resolution map of time-averaged (2010-2018) basal melt rates, and time series (1994-2018) of meltwater fluxes for most ice shelves. Total basal meltwater flux in 1994 (1090±150 Gt/yr) was not significantly different from the steady-state value (1100±60 Gt/yr), but increased to 1570±140 Gt/yr in 2009, followed by a decline to 1160±150 Gt/yr in 2018. For the four largest "cold-water" ice shelves we partition meltwater fluxes into deep and shallow sources to reveal distinct signatures of temporal variability, providing insights into climate forcing of basal melting and the impact of this melting on the Southern Ocean.

2.
Nature ; 558(7709): 223-232, 2018 06.
Article in English | MEDLINE | ID: mdl-29899480

ABSTRACT

Satellite observations have transformed our understanding of the Antarctic cryosphere. The continent holds the vast majority of Earth's fresh water, and blankets swathes of the Southern Hemisphere in ice. Reductions in the thickness and extent of floating ice shelves have disturbed inland ice, triggering retreat, acceleration and drawdown of marine-terminating glaciers. The waxing and waning of Antarctic sea ice is one of Earth's greatest seasonal habitat changes, and although the maximum extent of the sea ice has increased modestly since the 1970s, inter-annual variability is high, and there is evidence of longer-term decline in its extent.


Subject(s)
Ice Cover , Antarctic Regions , Ecosystem , Lakes , Motion , Oceans and Seas , Satellite Imagery
3.
Science ; 315(5818): 1544-8, 2007 Mar 16.
Article in English | MEDLINE | ID: mdl-17303716

ABSTRACT

Satellite laser altimeter elevation profiles from 2003 to 2006 collected over the lower parts of Whillans and Mercer ice streams, West Antarctica, reveal 14 regions of temporally varying elevation, which we interpret as the surface expression of subglacial water movement. Vertical motion and spatial extent of two of the largest regions are confirmed by satellite image differencing. A major, previously unknown subglacial lake near the grounding line of Whillans Ice Stream is observed to drain 2.0 cubic kilometers of water into the ocean over approximately 3 years, while elsewhere a similar volume of water is being stored subglacially. These observations reveal a wide spread, dynamic subglacial water system that may exert an important control on ice flow and mass balance.

SELECTION OF CITATIONS
SEARCH DETAIL
...