Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
2.
Sci Rep ; 12(1): 19944, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36402800

ABSTRACT

Due to the shortage of personal protective equipment (PPE) during the COVID-19 pandemic, the interest and demand for sterilization devices to reuse PPE has increased. For reuse of face masks, they must be effectively decontaminated of potential infectious agents without compromising its filtration ability during sterilization. In this study, we utilized an atmospheric pressure pulsed dielectric barrier discharge (DBD), combined with nebulized liquid microdroplets to generate plasma-activated mist (PAM). MS2 and T4 bacteriophages were used to conduct the decontamination tests on two types of N95 respirators. Results showed at least a 2-log reduction of MS2 and T4 on N95 respirators treated in one cycle with 7.8% hydrogen peroxide PAM and at least a 3-log reduction treated in 10% hydrogen peroxide PAM. In addition, it was found that there was no significant degradation in filtration efficiency of N95 respirators (3M 1860 and 1804) treated in 10% hydrogen peroxide PAM found after 20 cycles. In terms of re-useability of masks after treatment as determined, it was shown that the elastic straps of 3M 1804 were fragmented after 20 treatment cycles rendering them unusable, while the straps of 3M 1860 were not negatively affected even after 20 disinfection cycles.


Subject(s)
COVID-19 , Respiratory Protective Devices , Viruses , Humans , N95 Respirators , Disinfection/methods , Water , Bacteriophage T4 , Hydrogen Peroxide , Pandemics
4.
J Drugs Dermatol ; 19(12): 1177-1180, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33346510

ABSTRACT

Androgenetic alopecia (AGA) is a chronic form of hair loss. Cold atmospheric (physical) plasma (CAP) is partly ionized gas with various widely researched effects on living tissues. CAP is an emerging treatment modality in dermatology with uses for chronic leg ulcer, actinic keratosis, warts, and other applications. Its previously demonstrated ability to induce stem cell differentiation in various cell types makes CAP a possible treatment option for AGA. Directly creating CAP on the scalp surface has drawbacks, but indirect CAP treatment—when a CAP-treated liquid is used as topical therapy—offers an alternative. In a clinical pilot study, we treated 14 patients with AGA using the indirect CAP method for three months (4 patients) and six months (10 patients). The indirect CAP treatment was well tolerated and while the primary goal of the study was not to assess efficacy, most patients reported improvement, and the investigator’s assessment also showed improvement in most patients. Our findings create the foundation for longer, extensive trials to systematically assess the efficacy of indirect CAP treatment for AGA. ClinicalTrials.gov: NCT04379752 J Drugs Dermatol. 2020;19(12): doi:10.36849/JDD.2020.5186.


Subject(s)
Alopecia/therapy , Cryotherapy/adverse effects , Plasma Gases/adverse effects , Adult , Aged , Cryotherapy/methods , Female , Humans , Male , Middle Aged , Pilot Projects , Plasma Gases/administration & dosage , Scalp , Treatment Outcome
5.
Pediatr Dermatol ; 37(4): 706-709, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32323887

ABSTRACT

Treatment of warts is especially challenging in the pediatric patient population because of the pain associated with many of available treatments. Cold atmospheric pressure plasma is a novel treatment with expanding clinical uses for a variety of skin conditions. In this case series, we present five pediatric patients who achieved full clearance of warts with cold plasma treatment. While further studies are needed, these results are promising because of the efficacy and entirely painless nature of this treatment modality.


Subject(s)
Plasma Gases , Skin Diseases , Warts , Administration, Cutaneous , Child , Humans , Plasma Gases/therapeutic use , Treatment Outcome , Warts/drug therapy
6.
Int J Mol Sci ; 18(5)2017 May 03.
Article in English | MEDLINE | ID: mdl-28467380

ABSTRACT

A novel application for non-thermal plasma is the induction of immunogenic cancer cell death for cancer immunotherapy. Cells undergoing immunogenic death emit danger signals which facilitate anti-tumor immune responses. Although pathways leading to immunogenic cell death are not fully understood; oxidative stress is considered to be part of the underlying mechanism. Here; we studied the interaction between dielectric barrier discharge plasma and cancer cells for oxidative stress-mediated immunogenic cell death. We assessed changes to the intracellular oxidative environment after plasma treatment and correlated it to emission of two danger signals: surface-exposed calreticulin and secreted adenosine triphosphate. Plasma-generated reactive oxygen and charged species were recognized as the major effectors of immunogenic cell death. Chemical attenuators of intracellular reactive oxygen species successfully abrogated oxidative stress following plasma treatment and modulated the emission of surface-exposed calreticulin. Secreted danger signals from cells undergoing immunogenic death enhanced the anti-tumor activity of macrophages. This study demonstrated that plasma triggers immunogenic cell death through oxidative stress pathways and highlights its potential development for cancer immunotherapy.


Subject(s)
Apoptosis/immunology , Immunotherapy/methods , Neoplasms/therapy , Oxidative Stress/immunology , Plasma Gases/therapeutic use , Reactive Oxygen Species/immunology , A549 Cells , Adenosine Triphosphate/metabolism , Analysis of Variance , Antigen-Presenting Cells/metabolism , Calreticulin/metabolism , Electric Conductivity , Electrodes , Humans , Immunity , Quartz/chemistry , Reactive Oxygen Species/metabolism , Ultraviolet Rays
8.
J Int Soc Sports Nutr ; 13: 45, 2016.
Article in English | MEDLINE | ID: mdl-27932937

ABSTRACT

BACKGROUND: Previous research has shown fluid replacement beverages ingested after exercise can affect hydration biomarkers. No specific hydration marker is universally accepted as an ideal rehydration parameter following strenuous exercise. Currently, changes in body mass are used as a parameter during post-exercise hydration. Additional parameters are needed to fully appreciate and better understand rehydration following strenuous exercise. This randomized, double-blind, parallel-arm trial assessed the effect of high-pH water on four biomarkers after exercise-induced dehydration. METHODS: One hundred healthy adults (50 M/50 F, 31 ± 6 years of age) were enrolled at a single clinical research center in Camden, NJ and completed this study with no adverse events. All individuals exercised in a warm environment (30 °C, 70% relative humidity) until their weight was reduced by a normally accepted level of 2.0 ± 0.2% due to perspiration, reflecting the effects of exercise in producing mild dehydration. Participants were randomized to rehydrate with an electrolyzed, high-pH (alkaline) water or standard water of equal volume (2% body weight) and assessed for an additional 2-h recovery period following exercise in order to assess any potential variations in measured parameters. The following biomarkers were assessed at baseline and during their recovery period: blood viscosity at high and low shear rates, plasma osmolality, bioimpedance, and body mass, as well as monitoring vital signs. Furthermore, a mixed model analysis was performed for additional validation. RESULTS: After exercise-induced dehydration, consumption of the electrolyzed, high-pH water reduced high-shear viscosity by an average of 6.30% compared to 3.36% with standard purified water (p = 0.03). Other measured biomarkers (plasma osmolality, bioimpedance, and body mass change) revealed no significant difference between the two types of water for rehydration. However, a mixed model analysis validated the effect of high-pH water on high-shear viscosity when compared to standard purified water (p = 0.0213) after controlling for covariates such as age and baseline values. CONCLUSIONS: A significant difference in whole blood viscosity was detected in this study when assessing a high-pH, electrolyte water versus an acceptable standard purified water during the recovery phase following strenuous exercise-induced dehydration.


Subject(s)
Blood Viscosity/drug effects , Dehydration/diet therapy , Drinking Water/chemistry , Electrolytes/pharmacology , Fluid Therapy/methods , Adult , Body Weight/drug effects , Dehydration/physiopathology , Double-Blind Method , Electrolytes/chemistry , Female , Humans , Hydrogen-Ion Concentration , Male , Osmolar Concentration , Water-Electrolyte Balance/drug effects
9.
Plasma Process Polym ; 12(10): 1117-1127, 2015 Oct.
Article in English | MEDLINE | ID: mdl-37908316

ABSTRACT

Atmospheric pressure non-equilibrium plasmas are efficacious in killing both prokaryotic and eukaryotic cells. While the mechanism of plasma induced cell death has been thoroughly studied in prokaryotes, detailed investigation of plasma mediated eukaryotic cell death is still pending. When plasma is generated, four major components that interact with cells are produced: electric fields, radiation, charged particles, and neutral gas species. The goal of this study was to determine which of the plasma components are responsible for plasma-induced cell death by isolating and removing each from treatment. The C3H10T1/2 murine mesenchyme stem cell line was treated in six well plates, stained with Propidium Iodide to determine viability, and analyzed by image cytometry. Our results show that plasma-generated charges and reactive oxygen species are the primary contributors to cell death.

10.
PLoS One ; 8(12): e82143, 2013.
Article in English | MEDLINE | ID: mdl-24349203

ABSTRACT

Enhancing chondrogenic and osteogenic differentiation is of paramount importance in providing effective regenerative therapies and improving the rate of fracture healing. This study investigated the potential of non-thermal atmospheric dielectric barrier discharge plasma (NT-plasma) to enhance chondrocyte and osteoblast proliferation and differentiation. Although the exact mechanism by which NT-plasma interacts with cells is undefined, it is known that during treatment the atmosphere is ionized generating extracellular reactive oxygen and nitrogen species (ROS and RNS) and an electric field. Appropriate NT-plasma conditions were determined using lactate-dehydrogenase release, flow cytometric live/dead assay, flow cytometric cell cycle analysis, and Western blots to evaluate DNA damage and mitochondrial integrity. We observed that specific NT-plasma conditions were required to prevent cell death, and that loss of pre-osteoblastic cell viability was dependent on intracellular ROS and RNS production. To further investigate the involvement of intracellular ROS, fluorescent intracellular dyes Mitosox (superoxide) and dihydrorhodamine (peroxide) were used to assess onset and duration after NT-plasma treatment. Both intracellular superoxide and peroxide were found to increase immediately post NT-plasma treatment. These increases were sustained for one hour but returned to control levels by 24 hr. Using the same treatment conditions, osteogenic differentiation by NT-plasma was assessed and compared to peroxide or osteogenic media containing ß-glycerolphosphate. Although both NT-plasma and peroxide induced differentiation-specific gene expression, neither was as effective as the osteogenic media. However, treatment of cells with NT-plasma after 24 hr in osteogenic or chondrogenic media significantly enhanced differentiation as compared to differentiation media alone. The results of this study show that NT-plasma can selectively initiate and amplify ROS signaling to enhance differentiation, and suggest this technology could be used to enhance bone fusion and improve healing after skeletal injury.


Subject(s)
Atmosphere/chemistry , Cell Differentiation/drug effects , Electricity , Osteoblasts/cytology , Plasma Gases/pharmacology , Animals , Cell Death/drug effects , Cell Line , Cell Proliferation/drug effects , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Intracellular Space/metabolism , Mice , Osteoblasts/drug effects , Osteoblasts/metabolism , Osteogenesis/drug effects , Polymerase Chain Reaction , Reactive Oxygen Species/metabolism
11.
J Surg Res ; 179(1): e1-e12, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22480830

ABSTRACT

Thermal plasma is a valued tool in surgery for its coagulative and ablative properties. We suggested through in vitro studies that nonthermal plasma can sterilize tissues, inactive pathogens, promote coagulation, and potentiate wound healing. The present research was undertaken to study acute toxicity in porcine skin tissues. We demonstrate that floating electrode-discharge barrier discharge (FE-DBD) nonthermal plasma is electrically safe to apply to living organisms for short periods. We investigated the effects of FE-DBD plasma on Yorkshire pigs on intact and wounded skin immediately after treatment or 24h posttreatment. Macroscopic or microscopic histological changes were identified using histological and immunohistochemical techniques. The changes were classified into four groups for intact skin: normal features, minimal changes or congestive changes, epidermal layer damage, and full burn and into three groups for wounded skin: normal, clot or scab, and full burn-like features. Immunohistochemical staining for laminin layer integrity showed compromise over time. A marker for double-stranded DNA breaks, γ-H2AX, increased over plasma-exposure time. These findings identified a threshold for plasma exposure of up to 900s at low power and <120s at high power. Nonthermal FE-DBD plasma can be considered safe for future studies of external use under these threshold conditions for evaluation of sterilization, coagulation, and wound healing.


Subject(s)
Plasma Gases/therapeutic use , Skin/physiopathology , Wounds, Penetrating/physiopathology , Wounds, Penetrating/therapy , Animals , Female , Histones/metabolism , Laminin/metabolism , Models, Animal , Pilot Projects , Skin/metabolism , Swine , Time Factors , Treatment Outcome , Wound Healing/physiology , Wounds, Penetrating/metabolism
12.
J Food Prot ; 75(1): 22-8, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22221351

ABSTRACT

Nonthermal plasma has been shown to be effective in reducing pathogens on the surface of a range of fresh produce products. The research presented here investigated the effectiveness of nonthermal dielectric barrier discharge plasma on Salmonella enterica and Campylobacter jejuni inoculated onto the surface of boneless skinless chicken breast and chicken thigh with skin. Chicken samples were inoculated with antibiotic-resistant strains of S. enterica and C. jejuni at levels of 10(1) to 10(4) CFU and exposed to plasma for a range of time points (0 to 180 s in 15-s intervals). Surviving antibiotic-resistant pathogens were recovered and counted on appropriate agar. In order to determine the effect of plasma on background microflora, noninoculated skinless chicken breast and thighs with skin were exposed to air plasma at ambient pressure. Treatment with plasma resulted in elimination of low levels (10(1) CFU) of both S. enterica and C. jejuni on chicken breasts and C. jejuni from chicken skin, but viable S. enterica cells remained on chicken skin even after 20 s of exposure to plasma. Inoculum levels of 10(2), 10(3), and 10(4) CFU of S. enterica on chicken breast and chicken skin resulted in maximum reduction levels of 1.85, 2.61, and 2.54 log, respectively, on chicken breast and 1.25, 1.08, and 1.31 log, respectively, on chicken skin following 3 min of plasma exposure. Inoculum levels of 10(2), 10(3), and 10(4) CFU of C. jejuni on chicken breast and chicken skin resulted in maximum reduction levels of 1.65, 2.45, and 2.45 log, respectively, on chicken breast and 1.42, 1.87, and 3.11 log, respectively, on chicken skin following 3 min of plasma exposure. Plasma exposure for 30 s reduced background microflora on breast and skin by an average of 0.85 and 0.21 log, respectively. This research demonstrates the feasibility of nonthermal dielectric barrier discharge plasma as an intervention to help reduce foodborne pathogens on the surface of raw poultry.


Subject(s)
Campylobacter jejuni/growth & development , Chickens/microbiology , Disinfection/methods , Food Handling/methods , Salmonella enterica/growth & development , Animals , Colony Count, Microbial , Electricity , Food Contamination/analysis , Food Contamination/prevention & control , Food Microbiology , Microbial Viability , Plasma , Skin/microbiology
13.
Antimicrob Agents Chemother ; 55(3): 1053-62, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21199923

ABSTRACT

Oxidative stress leads to membrane lipid peroxidation, which yields products causing variable degrees of detrimental oxidative modifications in cells. Reactive oxygen species (ROS) are the key regulators in this process and induce lipid peroxidation in Escherichia coli. Application of nonthermal (cold) plasma is increasingly used for inactivation of surface contaminants. Recently, we reported a successful application of nonthermal plasma, using a floating-electrode dielectric-barrier discharge (FE-DBD) technique for rapid inactivation of bacterial contaminants in normal atmospheric air (S. G. Joshi et al., Am. J. Infect. Control 38:293-301, 2010). In the present report, we demonstrate that FE-DBD plasma-mediated inactivation involves membrane lipid peroxidation in E. coli. Dose-dependent ROS, such as singlet oxygen and hydrogen peroxide-like species generated during plasma-induced oxidative stress, were responsible for membrane lipid peroxidation, and ROS scavengers, such as α-tocopherol (vitamin E), were able to significantly inhibit the extent of lipid peroxidation and oxidative DNA damage. These findings indicate that this is a major mechanism involved in FE-DBD plasma-mediated inactivation of bacteria.


Subject(s)
Disinfection/methods , Electricity , Escherichia coli/metabolism , Lipid Peroxidation , Membrane Lipids/metabolism , DNA Damage , Reactive Oxygen Species/metabolism
14.
Ann Biomed Eng ; 39(2): 674-87, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21046465

ABSTRACT

Non-thermal atmospheric pressure dielectric barrier discharge (DBD) plasma may provide a novel approach to treat malignancies via induction of apoptosis. The purpose of this study was to evaluate the potential of DBD plasma to induce apoptosis in melanoma cells. Melanoma cells were exposed to plasma at doses that did not induce necrosis, and cell viability and apoptotic activity were evaluated by Trypan blue exclusion test, Annexin-V/PI staining, caspase-3 cleavage, and TUNEL® analysis. Trypan blue staining revealed that non-thermal plasma treatment significantly decreased the viability of cells in a dose-dependent manner 3 and 24 h after plasma treatment. Annexin-V/PI staining revealed a significant increase in apoptosis in plasma-treated cells at 24, 48, and 72 h post-treatment (p < 0.001). Caspase-3 cleavage was observed 48 h post-plasma treatment at a dose of 15 J/cm(2). TUNEL® analysis of plasma-treated cells demonstrated an increase in apoptosis at 48 and 72 h post-treatment (p < 0.001) at a dose of 15 J/cm(2). Pre-treatment with N-acetyl-L: -cysteine (NAC), an intracellular reactive oxygen species (ROS) scavenger, significantly decreased apoptosis in plasma-treated cells at 5 and 15 J/cm(2). Plasma treatment induces apoptosis in melanoma cells through a pathway that appears to be dependent on production of intracellular ROS. DBD plasma production of intracellular ROS leads to dose-dependent DNA damage in melanoma cells, detected by γ-H2AX, which was completely abrogated by pre-treating cells with ROS scavenger, NAC. Plasma-induced DNA damage in turn may lead to the observed plasma-induced apoptosis. Since plasma is non-thermal, it may be used to selectively treat malignancies.


Subject(s)
Apoptosis/drug effects , Melanoma/pathology , Melanoma/physiopathology , Plasma Gases/pharmacology , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Humans
15.
J Acoust Soc Am ; 125(4): 1919-29, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19354367

ABSTRACT

Propagation of energy along the sound channel axis cannot be formally described in terms of geometrical acoustics due to repeated cusped caustics along the axis. In neighborhoods of these cusped caustics, a very complicated interference pattern is observed. Neighborhoods of interference grow with range and overlap at long ranges. This results in the formation of a complex interference wave--the axial wave--that propagates along the sound channel axis like a wave belonging to a crescendo of near-axial arrivals. The principal properties of this wave are calculated for the actual space-time configuration realized during a 2004 long-range propagation experiment conducted in the North Pacific. The experiment used M-sequences at 68.2 and 75 Hz, transmitter depths from 350 to 800 m, and ranges from 50 to 3200 km. Calculations show that the axial wave would be detectable for an optimal geometry-both transmitter and receiver at the sound channel axis--for a "smooth" range-dependent sound speed field. The addition of sound speed perturbations--induced here by simulated internal waves--randomizes the acoustic field to the extent that the axial wave becomes undetectable. These results should be typical for mid-latitude oceans with similar curvatures about the sound speed minimum.

16.
IEEE Trans Biomed Eng ; 55(2 Pt 1): 643-9, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18270000

ABSTRACT

The drug-eluting stent's increasingly frequent occurrence late stage thrombosis have created a need for new strategies for intervention in coronary artery disease. This paper demonstrates further development of our minimally invasive, targeted drug delivery system that uses induced magnetism to administer repeatable and patient specific dosages of therapeutic agents to specific sites in the human body. Our first aim is the use of magnetizable stents for the prevention and treatment of coronary restenosis; however, future applications include the targeting of tumors, vascular defects, and other localized pathologies. Future doses can be administered to the same site by intravenous injection. This implant-based drug delivery system functions by placement of a weakly magnetizable stent or implant at precise locations in the cardiovascular system, followed by the delivery of magnetically susceptible drug carriers. The stents are capable of applying high local magnetic field gradients within the body, while only exposing the body to a modest external field. The local gradients created within the blood vessel create the forces needed to attract and hold drug-containing magnetic nanoparticles at the implant site. Once these particles are captured, they are capable of delivering therapeutic agents such as antineoplastics, radioactivity, or biological cells.


Subject(s)
Drug Implants , Magnetics/therapeutic use , Rheology/instrumentation , Stents , Animals , Equipment Design , Equipment Failure Analysis , Rats , Rheology/methods
17.
Article in English | MEDLINE | ID: mdl-19163482

ABSTRACT

Non-thermal dielectric barrier discharge plasma is now being widely developed for various medical applications such as skin sterilization, blood coagulation, induction of apoptosis in malignant tissues, and wound healing among others. In this paper, we investigate the toxicity of non-thermal plasma treatment on endothelial cells, which line all blood contacting surfaces in the body. Our initial results indicate that low power non-thermal plasma is relatively non-toxic to endothelial cells at short exposure times up to 30 s, while non-thermal plasma treatment at longer exposure times is cytotoxic. Non-thermal plasma at shorter exposure times may induce proliferation in the cells.


Subject(s)
Electricity , Endothelial Cells/pathology , Endothelial Cells/radiation effects , Hot Temperature , Animals , Apoptosis , Catalysis , Cell Membrane/metabolism , Cell Proliferation , Culture Media, Serum-Free/metabolism , Electrodes , Endothelial Cells/cytology , Equipment Design , Gases , Humans , Swine , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...