Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36096532

ABSTRACT

BACKGROUND: Cancer immunotherapy has revolutionized cancer treatment. However, considering the limited success of immunotherapy to only some cancer types and patient cohorts, there is an unmet need for developing new treatments that will result in higher response rates in patients with cancer. Immunoglobulin-like transcript 2 (ILT2), a LILRB family member, is an inhibitory receptor expressed on a variety of immune cells including T cells, natural killer (NK) cells and different myeloid cells. In the tumor microenvironment, binding of class I MHC (in particular HLA-G) to ILT2 on immune cells mediates a strong inhibitory effect, which manifests in inhibition of antitumor cytotoxicity of T and NK cells, and prevention of phagocytosis of the tumor cells by macrophages. METHODS: We describe here the development and characteristics of BND-22, a novel, humanized monoclonal antibody that selectively binds to ILT2 and blocks its interaction with classical MHC I and HLA-G. BND-22 was evaluated for its binding and blocking characteristics as well as its ability to increase the antitumor activity of macrophages, T cells and NK cells in various in vitro, ex vivo and in vivo systems. RESULTS: Collectively, our data suggest that BND-22 enhances activity of both innate and adaptive immune cells, thus generating robust and comprehensive antitumor immunity. In humanized mice models, blocking ILT2 with BND-22 decreased the growth of human tumors, hindered metastatic spread to the lungs, and prolonged survival of the tumor-bearing mice. In addition, BND-22 improved the antitumor immune response of approved therapies such as anti-PD-1 or anti-EGFR antibodies. CONCLUSIONS: BND-22 is a first-in-human ILT2 blocking antibody which has demonstrated efficient antitumor activity in various preclinical models as well as a favorable safety profile. Clinical evaluation of BND-22 as a monotherapy or in combination with other therapeutics is under way in patients with cancer. TRIAL REGISTRATION NUMBER: NCT04717375.


Subject(s)
HLA-G Antigens , Neoplasms , Animals , HLA-G Antigens/metabolism , Humans , Immunotherapy , Killer Cells, Natural , Mice , Neoplasms/drug therapy , T-Lymphocytes , Tumor Microenvironment
3.
Int J Cancer ; 144(9): 2279-2289, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30548585

ABSTRACT

Hematopoietic progenitors, residing in the bone marrow (BM) niche, are supported by mesenchymal stromal cells (MSCs). Cytogenetic and molecular aberrations in these progenitors lead to acute myeloid leukemia (AML). The BM-MSC role in leukemogenesis is not fully elucidated. In the current study, an ex-vivo system of patient's own stroma (POS), best mimicking the in-vivo BM niche, has been developed aiming to unravel interactions and crosstalk between MSCs and AML cells. POS derived from AML patients at diagnosis (Dx), relapse (Rx) and remission (Rm) was compared to healthy donor MSCs in terms of their morphology, growth pattern, support of leukemia cell viability and cytokine profile. Compared to control MSCs, POS (Dx/Rx, Rm) demonstrated a reduced proliferation rate (35%), significantly slower expansion, enlarged cell area (3-4-fold) and provided preferential support to leukemic cells of the same individual. Cytokine profiling showed significantly higher secreted phosphoprotein-1 (SPP1) expression in Dx/Rx and Rm POS compared to healthy MSCs. Additionally, the angiopoietin-1 expression was elevated in Dx/Rx POS with a further increase in the AML cell presence. In conclusion, the fact that POS derived in active disease and remission exhibited similar morphological and functional characteristics, might imply the involvement of the BM niche in leukemogenesis.


Subject(s)
Bone Marrow Cells/pathology , Bone Marrow/pathology , Carcinogenesis/pathology , Hematopoietic Stem Cells/pathology , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/pathology , Adult , Angiopoietin-1/biosynthesis , Animals , Cell Line , Cell Proliferation , Humans , Mice , Osteopontin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...