Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(21): 34123-34142, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37859176

ABSTRACT

In this paper, we introduce a method for mapping profiles of internal electric fields in birefringent crystals based on the electro-optic Pockels effect and measuring phase differences of low-intensity polarized light. In the case of the studied 6H-SiC crystal with graphene electrodes, the experiment is significantly affected by birefringence at zero bias voltage applied to the crystal and a strong thermo-optical effect. We dealt with these phenomena by adding a Soleil-Babinet compensator and using considerations based on measurements of crystal heating under laser illumination. The method can be generalized and adapted to any Pockels crystal that can withstand sufficiently high voltages. We demonstrate the significant formation of space charge in semi-insulating 6H-SiC under illumination by above-bandgap light.

2.
Sci Rep ; 11(1): 2154, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33495521

ABSTRACT

This paper describes a new method for direct measurement and evaluation of the inhomogeneous electrostatic vector field with translational symmetry in electro-optic materials exhibiting the Pockels effect. It is based on the evaluation of maximum transmittance of low intensity light passing through a sample under a voltage bias. Here, the sample is located between rotating crossed polarizers, and camera images are obtained at each point to determine the electric field. The evaluation procedure is demonstrated using data acquired on a CdZnTeSe quasi-hemispheric semiconductor gamma-ray detector. In addition to CdTe-related compounds, the method can be used for various other materials showing [Formula: see text] symmetry such as GaAs, CdTe, GaP, 3C-SiC, and ZnS. Furthermore, it can be generalized to other crystalline materials showing the Pockels effect. The method can be used to probe the space charge and the electric field in several kinds of electronic components and devices, as well as provide useful data on the role of defects, contact configurations and other surface and bulk inhomogeneities in the material that can affect the distribution of the internal electric field.

SELECTION OF CITATIONS
SEARCH DETAIL
...