Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 51(3): 312-324, 2022 May.
Article in English | MEDLINE | ID: mdl-35357715

ABSTRACT

Changing precipitation has the potential to alter nitrous oxide (N2 O) emissions from agricultural regions. In this study, we applied the Coupled Model Intercomparison Project Phase 5 end-of-century RCP 8.5 (business as usual) precipitation projections for the U.S. Upper Midwest and examined the effects of mean precipitation changes, characterized by increased early-season rainfall and decreased mid- to late-season rainfall, on N2 O emissions from a conventionally managed corn (Zea mays L.) cropping system grown in an indoor mesocosm facility over four growing seasons. We also assessed the response of N2 O emissions to over 1,000 individual rain events. Nitrous oxide emissions were most strongly correlated with water-filled pore space (WFPS) and soil nitrogen (N) status. After rain events, the change in N2 O emissions, relative to pre-rain emissions, was more likely to be positive when soil NO3 - was >40 mg N kg-1 soil and soil NH4 + was >10 mg N kg-1 soil and was more likely to be negative when soil NO3 - was >40 mg N kg-1 soil and soil NH4 + was <10 mg N kg-1 soil. Similarly, hourly N2 O emissions remained <5 nmol m- 2 s-1 when combined NH4 + + NO3 - was <20 mg N kg-1 soil or NH4 + and NO3 - were <5 and 20 mg N kg-1 soil, respectively. Rain event magnitude did not substantially affect the change in N2 O flux. Finally, growing-season N2 O emissions, soil moisture, and inorganic N content were not affected by the future precipitation pattern. Near-optimal soil WFPS combined with soil N concentrations above the identified thresholds favor higher N2 O emissions.


Subject(s)
Nitrous Oxide , Soil , Agriculture , Nitrogen/analysis , Nitrous Oxide/analysis , Rain , Water , Zea mays
2.
Chem Res Toxicol ; 34(3): 892-900, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33656867

ABSTRACT

Dimethyl selenide (DMSe) is one of the major volatile organoselenium compounds released into the atmosphere through plant metabolism and microbial methylation. DMSe has been recently revealed as a precursor of secondary organic aerosol (SOA), and its resultant SOA possesses strong oxidizing capability toward thiol groups that can perturb several major biological pathways in human airway epithelial cells and is linked to genotoxicity, DNA damage, and p53-mediated stress responses. Mounting evidence has suggested that long noncoding RNAs (lncRNAs) are involved in stress responses to internal and environmental stimuli. However, the underlying molecular interactions remain to be elucidated. In this study, we performed integrative analyses of lncRNA-mRNA coexpression in the transformed human bronchial epithelial BEAS-2B cell line exposed to DMSe-derived SOA. We identified a total of 971 differentially expressed lncRNAs in BEAS-2B cells exposed to SOA derived from O3 and OH oxidation of DMSe. Gene ontology (GO) network analysis of cis-targeted genes showed significant enrichment of DNA damage, apoptosis, and p53-mediated stress response pathways. trans-Acting lncRNAs, including PINCR, PICART1, DLGAP1-AS2, and LINC01629, known to be associated with human carcinogenesis, also showed altered expression in cell treated with DMSe-SOA. Overall, this study highlights the regulatory role of lncRNAs in altered gene expression induced by DMSe-SOA exposure.


Subject(s)
Epithelial Cells/drug effects , Lung/drug effects , Organoselenium Compounds/pharmacology , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Aerosols/pharmacology , Cells, Cultured , Epithelial Cells/metabolism , Humans , Lung/metabolism , RNA-Seq
3.
Environ Sci Technol ; 53(24): 14660-14669, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31751125

ABSTRACT

Dimethyl selenide (DMSe) is one of the major volatile organoselenium compounds released from aquatic and terrestrial environments through microbial transformation and plant metabolism. The detailed processes of DMSe leading to secondary organic aerosol (SOA) formation and the pulmonary health effects induced by inhalation of DMSe-derived SOA remain largely unknown. In this study, we characterized the chemical composition and formation yields of SOA produced from the oxidation of DMSe with OH radicals and O3 in controlled chamber experiments. Further, we profiled the transcriptome-wide gene expression changes in human airway epithelial cells (BEAS-2B) after exposure to DMSe-derived SOA. Our analyses indicated a significantly higher SOA yield resulting from the OH-initiated oxidation of DMSe. The oxidative potential of DMSe-derived SOA, as measured by the dithiothreitol (DTT) assay, suggested the presence of oxidizing moieties in DMSe-derived SOA at levels higher than typical ambient aerosols. Utilizing RNA sequencing (RNA-Seq) techniques, gene expression profiling followed by pathway enrichment analysis revealed several major biological pathways perturbed by DMSe-derived SOA, including elevated genotoxicity, DNA damage, and p53-mediated stress responses, as well as downregulated cholesterol biosynthesis, glycolysis, and interleukin IL-4/IL-13 signaling. This study highlights the significance of DMSe-derived SOA as a stressor in human airway epithelial cells.


Subject(s)
Air Pollutants , Organoselenium Compounds , Aerosols , Epithelial Cells , Humans , Oxidation-Reduction , Transcriptome
4.
Environ Sci Technol ; 53(16): 9378-9388, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31339712

ABSTRACT

The Salton Sea Basin in California suffers from poor air quality, and an expanding dry lakebed (playa) presents a new potential dust source. In 2017-18, depositing dust was collected approximately monthly at five sites in the Salton Sea Basin and analyzed for total elemental and soluble anion content. These data were analyzed with Positive Matrix Factorization (PMF). The PMF method resolved seven dust sources with distinct compositional markers: Playa (Mg, SO42-, Na, Ca, Sr), Colorado Alluvium (U, Ca), Local Alluvium (Al, Fe, Ti), Agricultural Burning (K, PO43-), Sea Spray (Na, Cl-, Se), Anthropogenic Trace Metals (Sb, As, Zn, Cd, Pb, Na), and Anthropogenic Copper (Cu). All sources except Local Alluvium are influenced or caused by current or historic anthropogenic activities. PMF attributed 55 to 80% of the measured dust flux to these six sources. The dust fluxes at the site where the playa source was dominant (89 g m-2 yr-1) were less than, but approaching the scale of, those observed at Owens Lake playas in the late 20th century. Playa emissions in the Salton Sea region were most intense during the late spring to early summer and contain high concentrations of evaporite mineral tracers, particularly Mg, Ca, and SO42-.


Subject(s)
Air Pollutants , Dust , California , Colorado , Environmental Monitoring , Particulate Matter
5.
Sci Total Environ ; 671: 108-118, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30928740

ABSTRACT

In an effort to combat the threat of drought, China constructed the South-to-North Water Transfer Project (SNWTP), the biggest water transfer project in terms of volume with the largest beneficiary population in the world. Reports have shown that massive water diversion projects have had detrimental environmental consequences including water quality decline and freshwater habitat degradation. However, few reports have assessed the impact of the transfer project on sediment quality, which is highly susceptible to allogenic and local anthropogenic pollution. We examined the distribution characteristics of Cd, Cr, Cu, Ni, Pb and Zn in surface sediment of the largest reservoir along the East Route of SNWTP, Nansihu Lake, followed by positive matrix factorization (PMF) to determine their potential sources. We utilized enrichment factor, multiple sediment quality guidelines (SQGs), and potential ecological risk index (RI) to determine metal accumulation or pollution risk. The results show the mean concentrations of Cr, Cu, Pb, Zn were slightly lower than in samples collected in 2003, 2010 and 2012, while the mean concentrations of Cr and Ni were significantly higher than samples from previous years. Among the six metals, Cr, Cu and Ni are of higher ecological risk according to SQGs; but Cd is of higher ecological risk according to RI. PMF analysis shows that industrial production and shipping are important sources of Cr, Cu, and Ni. PMF analysis also shows that a considerable amount of trace metals, especially Cd, Cr, Pb and Zn, mainly comes from the use of pesticide fertilizers and biomass sources in farmland, and may partly enter Nansihu Lake from SNWTP. This study reveals the possible sources of trace metals to the Nansihu Lake which is part of SNWTP; the results of the study may serve as a reference for better understanding the impact of future water diversion projects on metals distribution.

6.
Environ Sci Technol ; 51(15): 8283-8292, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28697595

ABSTRACT

The composition of ambient particulate matter (PM) and its sources were investigated at the Salton Sea, a shrinking saline lake in California. To investigate the influence of playa exposure on PM composition, PM samples were collected during two seasons and at two sites around the Salton Sea. To characterize source composition, soil samples were collected from local playa and desert surfaces. PM and soil samples were analyzed for 15 elements using mass spectrometry and X-ray diffraction. The contribution of sources to PM mass and composition was investigated using Al-referenced enrichment factors (EFs) and source factors resolved from positive matrix factorization (PMF). Playa soils were found to be significantly enriched in Ca, Na, and Se relative to desert soils. PMF analysis resolved the PM10 data with four source factors, identified as Playa-like, Desert-like, Ca-rich, and Se. Playa-like and desert-like sources were estimated to contribute to a daily average of 8.9% and 45% of PM10 mass, respectively. Additionally, playa sources were estimated to contribute to 38-68% of PM10 Na. PM10 Se concentrations showed strong seasonal variations, suggesting a seasonal cycle of Se volatilization and recondensation. These results support the importance of playas as a source of PM mass and a controlling factor of PM composition.


Subject(s)
Air Pollutants , Particulate Matter , California , Environmental Monitoring , Lakes , Particle Size , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...