Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Arch Toxicol ; 98(4): 1081-1093, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436695

ABSTRACT

Large interspecies differences between rats and mice concerning the hepatotoxicity and carcinogenicity of aflatoxin B1 (AFB1) are known, with mice being more resistant. However, a comprehensive interspecies comparison including subcellular liver tissue compartments has not yet been performed. In this study, we performed spatio-temporal intravital analysis of AFB1 kinetics in the livers of anesthetized mice and rats. This was supported by time-dependent analysis of the parent compound as well as metabolites and adducts in blood, urine, and bile of both species by HPLC-MS/MS. The integrated data from intravital imaging and HPLC-MS/MS analysis revealed major interspecies differences between rats and mice: (1) AFB1-associated fluorescence persisted much longer in the nuclei of rat than mouse hepatocytes; (2) in the sinusoidal blood, AFB1-associated fluorescence was rapidly cleared in mice, while a time-dependent increase was observed in rats in the first three hours after injection followed by a plateau that lasted until the end of the observation period of six hours; (3) this coincided with a far stronger increase of AFB1-lysine adducts in the blood of rats compared to mice; (4) the AFB1-guanine adduct was detected at much higher concentrations in bile and urine of rats than mice. In both species, the AFB1-glutathione conjugate was efficiently excreted via bile, where it reached concentrations at least three orders of magnitude higher compared to blood. In conclusion, major differences between mice and rats were observed, concerning the nuclear persistence, formation of AFB1-lysine adducts, and the AFB1-guanine adducts.


Subject(s)
Aflatoxins , Rats , Mice , Animals , Aflatoxins/metabolism , Aflatoxins/toxicity , Lysine/metabolism , Liquid Chromatography-Mass Spectrometry , Tandem Mass Spectrometry , Liver/metabolism , Aflatoxin B1/toxicity , Guanine/metabolism , Intravital Microscopy
2.
Arch Toxicol ; 98(5): 1533-1542, 2024 May.
Article in English | MEDLINE | ID: mdl-38466352

ABSTRACT

Acetaminophen (APAP) is known to cause a breach of the blood-bile barrier in mice that, via a mechanism called futile bile acid (BA) cycling, increases BA concentrations in hepatocytes above cytotoxic thresholds. Here, we compared this mechanism in mice and rats, because both species differ massively in their susceptibility to APAP and compared the results to available human data. Dose and time-dependent APAP experiments were performed in male C57BL6/N mice and Wistar rats. The time course of BA concentrations in liver tissue and in blood was analyzed by MALDI-MSI and LC-MS/MS. APAP and its derivatives were measured in the blood by LC-MS. APAP-induced liver damage was analyzed by histopathology, immunohistochemistry, and by clinical chemistry. In mice, a transient increase of BA in blood and in peri-central hepatocytes preceded hepatocyte death. The BA increase coincided with oxidative stress in liver tissue and a compromised morphology of bile canaliculi and immunohistochemically visualized tight junction proteins. Rats showed a reduced metabolic activation of APAP compared to mice. However, even at very high doses that caused cell death of hepatocytes, no increase of BA concentrations was observed neither in liver tissue nor in the blood. Correspondingly, no oxidative stress was detectable, and the morphology of bile canaliculi and tight junction proteins remained unaltered. In conclusion, different mechanisms cause cell death in rats and mice, whereby oxidative stress and a breach of the blood-bile barrier are seen only in mice. Since transient cholestasis also occurs in human patients with APAP overdose, mice are a clinically relevant species to study APAP hepatotoxicity but not rats.


Subject(s)
Acetaminophen , Chemical and Drug Induced Liver Injury , Mice , Rats , Humans , Male , Animals , Acetaminophen/toxicity , Acetaminophen/metabolism , Bile/metabolism , Chromatography, Liquid , Chemical and Drug Induced Liver Injury/pathology , Rats, Wistar , Tandem Mass Spectrometry , Liver/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL , Tight Junction Proteins/metabolism
3.
J Hepatol ; 80(2): 268-281, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37939855

ABSTRACT

BACKGROUND & AIMS: Cholemic nephropathy (CN) is a severe complication of cholestatic liver diseases for which there is no specific treatment. We revisited its pathophysiology with the aim of identifying novel therapeutic strategies. METHODS: Cholestasis was induced by bile duct ligation (BDL) in mice. Bile flux in kidneys and livers was visualized by intravital imaging, supported by MALDI mass spectrometry imaging and liquid chromatography-tandem mass spectrometry. The effect of AS0369, a systemically bioavailable apical sodium-dependent bile acid transporter (ASBT) inhibitor, was evaluated by intravital imaging, RNA-sequencing, histological, blood, and urine analyses. Translational relevance was assessed in kidney biopsies from patients with CN, mice with a humanized bile acid (BA) spectrum, and via analysis of serum BAs and KIM-1 (kidney injury molecule 1) in patients with liver disease and hyperbilirubinemia. RESULTS: Proximal tubular epithelial cells (TECs) reabsorbed and enriched BAs, leading to oxidative stress and death of proximal TECs, casts in distal tubules and collecting ducts, peritubular capillary leakiness, and glomerular cysts. Renal ASBT inhibition by AS0369 blocked BA uptake into TECs and prevented kidney injury up to 6 weeks after BDL. Similar results were obtained in mice with humanized BA composition. In patients with advanced liver disease, serum BAs were the main determinant of KIM-1 levels. ASBT expression in TECs was preserved in biopsies from patients with CN, further highlighting the translational potential of targeting ASBT to treat CN. CONCLUSIONS: BA enrichment in proximal TECs followed by oxidative stress and cell death is a key early event in CN. Inhibiting renal ASBT and consequently BA enrichment in TECs prevents CN and systemically decreases BA concentrations. IMPACT AND IMPLICATIONS: Cholemic nephropathy (CN) is a severe complication of cholestasis and an unmet clinical need. We demonstrate that CN is triggered by the renal accumulation of bile acids (BAs) that are considerably increased in the systemic blood. Specifically, the proximal tubular epithelial cells of the kidney take up BAs via the apical sodium-dependent bile acid transporter (ASBT). We developed a therapeutic compound that blocks ASBT in the kidneys, prevents BA overload in tubular epithelial cells, and almost completely abolished all disease hallmarks in a CN mouse model. Renal ASBT inhibition represents a potential therapeutic strategy for patients with CN.


Subject(s)
Carrier Proteins , Cholestasis , Kidney Diseases , Liver Diseases , Membrane Glycoproteins , Organic Anion Transporters, Sodium-Dependent , Symporters , Humans , Mice , Animals , Cholestasis/complications , Cholestasis/metabolism , Kidney/metabolism , Symporters/metabolism , Bile Acids and Salts/metabolism , Liver/metabolism , Bile Ducts/metabolism , Liver Diseases/metabolism , Sodium
4.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759553

ABSTRACT

Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD) is the most common chronic liver disease in Western countries. It is becoming increasingly evident that peripheral organ-centered inflammatory diseases, including liver diseases, are linked with brain dysfunctions. Therefore, this study aims to unravel the effect of MASLD on brain histology, cognitive functions, and neurotransmitters. For this purpose, mice fed for 48 weeks on standard (SD) or Western diet (WD) were evaluated by behavioral tests, followed by sacrifice and analysis of the liver-brain axis including histopathology, immunohistochemistry, and biochemical analyses. Histological analysis of the liver showed features of Metabolic Dysfunction-Associated Steatohepatitis (MASH) in the WD-fed mice including lipid droplet accumulation, inflammation, and fibrosis. This was accompanied by an elevation of transaminase and alkaline phosphatase activities, increase in inflammatory cytokine and bile acid concentrations, as well as altered amino acid concentrations in the blood. Interestingly, compromised blood capillary morphology coupled with astrogliosis and microgliosis were observed in brain hippocampus of the WD mice, indicating neuroinflammation or a disrupted neurovascular unit. Moreover, attention was impaired in WD-fed mice along with the observations of impaired motor activity and balance, enhanced anxiety, and stereotyped head-twitch response (HTR) behaviors. Analysis of neurotransmitters and modulators including dopamine, serotonin, GABA, glutamate, and acetylcholine showed region-specific dysregulation in the brain of the WD-fed mice. In conclusion, the induction of MASH in mice is accompanied by the alteration of cellular morphology and neurotransmitter expression in the brain, associated with compromised cognitive functions.


Subject(s)
Diet, Western , Fatty Liver , Animals , Mice , Diet, Western/adverse effects , Cognition , Brain
5.
Arch Toxicol ; 96(12): 3349-3361, 2022 12.
Article in English | MEDLINE | ID: mdl-36227364

ABSTRACT

The mycotoxin ochratoxin A (OTA) is a contaminant in food that causes nephrotoxicity and to a minor degree hepatotoxicity. Recently, we observed that OTA induces liver damage preferentially to the cytochrome P450 (CYP)-expressing pericentral lobular zone, similar to hepatotoxic substances known to be metabolically toxified by CYP, such as acetaminophen or carbon tetrachloride. To investigate whether CYP influences OTA toxicity, we used a single dose of OTA (7.5 mg/kg; intravenous) with and without pre-treatment with the pan CYP-inhibitor 1-aminobenzotriazole (ABT) 2 h before OTA administration. Blood, urine, as well as liver and kidney tissue samples were collected 24 h after OTA administration for biochemical and histopathological analyses. Inhibition of CYPs by ABT strongly increased the nephro- and hepatotoxicity of OTA. The urinary kidney damage biomarkers kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) were increased > 126-fold and > 20-fold, respectively, in mice treated with ABT and OTA compared to those receiving OTA alone. The blood biomarkers of liver damage, alanine transaminase (ALT) and aspartate transaminase (AST) both increased > 21- and 30-fold, respectively, when OTA was administered to ABT pre-treated mice compared to the effect of OTA alone. Histological analysis of the liver revealed a pericentral lobular damage induced by OTA despite CYP-inhibition by ABT. Administration of ABT alone caused no hepato- or nephrotoxicity. Overall, the results presented are compatible with a scenario where CYPs mediate the detoxification of OTA, yet the mechanisms responsible for the pericental liver damage pattern still remain to be elucidated.


Subject(s)
Chemical and Drug Induced Liver Injury , Liver Diseases , Mycotoxins , Animals , Mice , Lipocalin-2 , Carbon Tetrachloride , Acetaminophen/toxicity , Alanine Transaminase , Cytochrome P-450 Enzyme System/metabolism , Chemical and Drug Induced Liver Injury/etiology , Biomarkers , Aspartate Aminotransferases
6.
Arch Toxicol ; 96(11): 3067-3076, 2022 11.
Article in English | MEDLINE | ID: mdl-36102954

ABSTRACT

Colchicine is an anti-inflammatory drug with a narrow therapeutic index. Its binding to tubulin prevents microtubule polymerization; however, little is known about how depolymerization of microtubules interferes with the phagocytosis function of Kupffer cells (KC). Here, we applied functional intravital imaging techniques to investigate the influence of microtubule disruption by colchicine on KC morphology, as well as its capacity to clear foreign particles and bacterial lipopolysaccharide (LPS) in anesthetized mice. Intravital imaging of KC in healthy mice showed the typical elongated morphology, localization at the luminal side of the sinusoidal endothelial cells, and moving cell protrusions. In contrast, at colchicine doses of 1 mg/kg and higher (intraperitoneal), KC appeared roundish with strongly reduced protrusions and motility. To study the functional consequences of these alterations, we analyzed the capacity of KC to phagocytose fluorescent nanospheres (100 nm-size) and LPS. After tail vein injection, the nanospheres formed aggregates of up to ~ 5 µm moving along the sinusoidal bloodstream. In controls, the nanosphere aggregates were rapidly captured by the Kupffer cell protrusions, followed by an internalization process that lasted up to 10 min. Similar capture events and internalization processes were observed after the administration of fluorescently labeled LPS. In contrast, capture and internalization of both nanospheres and LPS by KC were strongly reduced in colchicine-treated mice. Reduced phagocytosis of LPS was accompanied by aggravated production of inflammatory cytokines. Since 0.4 mg/kg colchicine in mice has been reported to be bio-equivalent to human therapeutic doses, the here-observed adverse effects on KC occurred at doses only slightly above those used clinically, and may be critical for patients with endotoxemia due to a leaky gut-blood barrier.


Subject(s)
Kupffer Cells , Lipopolysaccharides , Animals , Anti-Inflammatory Agents/pharmacology , Colchicine/metabolism , Colchicine/toxicity , Cytokines/metabolism , Endothelial Cells/metabolism , Endotoxins , Humans , Lipopolysaccharides/toxicity , Mice , Tubulin/metabolism
7.
Bioinformatics ; 38(19): 4622-4628, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35976110

ABSTRACT

MOTIVATION: Over the last decades, image processing and analysis have become one of the key technologies in systems biology and medicine. The quantification of anatomical structures and dynamic processes in living systems is essential for understanding the complex underlying mechanisms and allows, i.e. the construction of spatio-temporal models that illuminate the interplay between architecture and function. Recently, deep learning significantly improved the performance of traditional image analysis in cases where imaging techniques provide large amounts of data. However, if only a few images are available or qualified annotations are expensive to produce, the applicability of deep learning is still limited. RESULTS: We present a novel approach that combines machine learning-based interactive image segmentation using supervoxels with a clustering method for the automated identification of similarly colored images in large image sets which enables a guided reuse of interactively trained classifiers. Our approach solves the problem of deteriorated segmentation and quantification accuracy when reusing trained classifiers which is due to significant color variability prevalent and often unavoidable in biological and medical images. This increase in efficiency improves the suitability of interactive segmentation for larger image sets, enabling efficient quantification or the rapid generation of training data for deep learning with minimal effort. The presented methods are applicable for almost any image type and represent a useful tool for image analysis tasks in general. AVAILABILITY AND IMPLEMENTATION: The presented methods are implemented in our image processing software TiQuant which is freely available at tiquant.hoehme.com. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Image Processing, Computer-Assisted , Machine Learning , Image Processing, Computer-Assisted/methods , Cluster Analysis , Software , Systems Biology
8.
Arch Toxicol ; 96(11): 2967-2981, 2022 11.
Article in English | MEDLINE | ID: mdl-35962801

ABSTRACT

Hypoalbuminemia (HA) is frequently observed in systemic inflammatory diseases and in liver disease. However, the influence of HA on the pharmacokinetics and toxicity of compounds with high plasma albumin binding remained insufficiently studied. The 'lack-of-delivery-concept' postulates that HA leads to less carrier mediated uptake of albumin bound substances into hepatocytes and to less glomerular filtration; in contrast, the 'concept-of-higher-free-fraction' argues that increased concentrations of non-albumin bound compounds facilitate hepatocellular uptake and enhance glomerular filtration. To address this question, we performed intravital imaging on livers and kidneys of anesthetized mice to quantify the spatio-temporal tissue distribution of the mycotoxin ochratoxin A (OTA) based on its auto-fluorescence in albumin knockout and wild-type mice. HA strongly enhanced the uptake of OTA from the sinusoidal blood into hepatocytes, followed by faster secretion into bile canaliculi. These toxicokinetic changes were associated with increased hepatotoxicity in heterozygous albumin knockout mice for which serum albumin was reduced to a similar extent as in patients with severe hypoalbuminemia. HA also led to a shorter half-life of OTA in renal capillaries, increased glomerular filtration, and to enhanced uptake of OTA into tubular epithelial cells. In conclusion, the results favor the 'concept-of-higher-free-fraction' in HA; accordingly, HA causes an increased tissue uptake of compounds with high albumin binding and increased organ toxicity. It should be studied if this concept can be generalized to all compounds with high plasma albumin binding that are substrates of hepatocyte and renal tubular epithelial cell carriers.


Subject(s)
Hypoalbuminemia , Mycotoxins , Ochratoxins , Animals , Hypoalbuminemia/metabolism , Kidney/metabolism , Liver/metabolism , Mice , Mycotoxins/metabolism , Ochratoxins/chemistry , Serum Albumin/metabolism , Tissue Distribution
9.
J Hepatol ; 77(1): 71-83, 2022 07.
Article in English | MEDLINE | ID: mdl-35131407

ABSTRACT

BACKGROUND & AIMS: Acetaminophen (APAP) overdose remains a frequent cause of acute liver failure, which is generally accompanied by increased levels of serum bile acids (BAs). However, the pathophysiological role of BAs remains elusive. Herein, we investigated the role of BAs in APAP-induced hepatotoxicity. METHODS: We performed intravital imaging to investigate BA transport in mice, quantified endogenous BA concentrations in the serum of mice and patients with APAP overdose, analyzed liver tissue and bile by mass spectrometry and MALDI-mass spectrometry imaging, assessed the integrity of the blood-bile barrier and the role of oxidative stress by immunostaining of tight junction proteins and intravital imaging of fluorescent markers, identified the intracellular cytotoxic concentrations of BAs, and performed interventions to block BA uptake from blood into hepatocytes. RESULTS: Prior to the onset of cell death, APAP overdose causes massive oxidative stress in the pericentral lobular zone, which coincided with a breach of the blood-bile barrier. Consequently, BAs leak from the bile canaliculi into the sinusoidal blood, which is then followed by their uptake into hepatocytes via the basolateral membrane, their secretion into canaliculi and repeated cycling. This, what we termed 'futile cycling' of BAs, led to increased intracellular BA concentrations that were high enough to cause hepatocyte death. Importantly, however, the interruption of BA re-uptake by pharmacological NTCP blockage using Myrcludex B and Oatp knockout strongly reduced APAP-induced hepatotoxicity. CONCLUSIONS: APAP overdose induces a breach of the blood-bile barrier which leads to futile BA cycling that causes hepatocyte death. Prevention of BA cycling may represent a therapeutic option after APAP intoxication. LAY SUMMARY: Only one drug, N-acetylcysteine, is approved for the treatment of acetaminophen overdose and it is only effective when given within ∼8 hours after ingestion. We identified a mechanism by which acetaminophen overdose causes an increase in bile acid concentrations (to above toxic thresholds) in hepatocytes. Blocking this mechanism prevented acetaminophen-induced hepatotoxicity in mice and evidence from patients suggests that this therapy may be effective for longer periods after ingestion compared to N-acetylcysteine.


Subject(s)
Chemical and Drug Induced Liver Injury , Drug Overdose , Acetaminophen/metabolism , Acetylcysteine/pharmacology , Animals , Bile Acids and Salts/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Mice, Inbred C57BL
10.
Cells ; 10(10)2021 09 23.
Article in English | MEDLINE | ID: mdl-34685496

ABSTRACT

Mouse models of non-alcoholic fatty liver disease (NAFLD) are required to define therapeutic targets, but detailed time-resolved studies to establish a sequence of events are lacking. Here, we fed male C57Bl/6N mice a Western or standard diet over 48 weeks. Multiscale time-resolved characterization was performed using RNA-seq, histopathology, immunohistochemistry, intravital imaging, and blood chemistry; the results were compared to human disease. Acetaminophen toxicity and ammonia metabolism were additionally analyzed as functional readouts. We identified a sequence of eight key events: formation of lipid droplets; inflammatory foci; lipogranulomas; zonal reorganization; cell death and replacement proliferation; ductular reaction; fibrogenesis; and hepatocellular cancer. Functional changes included resistance to acetaminophen and altered nitrogen metabolism. The transcriptomic landscape was characterized by two large clusters of monotonously increasing or decreasing genes, and a smaller number of 'rest-and-jump genes' that initially remained unaltered but became differentially expressed only at week 12 or later. Approximately 30% of the genes altered in human NAFLD are also altered in the present mouse model and an increasing overlap with genes altered in human HCC occurred at weeks 30-48. In conclusion, the observed sequence of events recapitulates many features of human disease and offers a basis for the identification of therapeutic targets.


Subject(s)
Carcinoma, Hepatocellular/pathology , Diet, Western/adverse effects , Liver Neoplasms/pathology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Disease Models, Animal , Disease Progression , Liver/metabolism , Mice , Mice, Inbred C57BL
11.
Arch Toxicol ; 95(6): 2163-2177, 2021 06.
Article in English | MEDLINE | ID: mdl-34003344

ABSTRACT

Local accumulation of xenobiotics in human and animal tissues may cause adverse effects. Large differences in their concentrations may exist between individual cell types, often due to the expression of specific uptake and export carriers. Here we established a two-photon microscopy-based technique for spatio-temporal detection of the distribution of mycotoxins in intact kidneys and livers of anesthetized mice with subcellular resolution. The mycotoxins ochratoxin A (OTA, 10 mg/kg b.w.) and aflatoxin B1 (AFB1, 1.5 mg/kg b.w.), which both show blue auto-fluorescence, were analyzed after intravenous bolus injections. Within seconds after administration, OTA was filtered by glomeruli, and enriched in distal tubular epithelial cells (dTEC). A striking feature of AFB1 toxicokinetics was its very rapid uptake from sinusoidal blood into hepatocytes (t1/2 ~ 4 min) and excretion into bile canaliculi. Interestingly, AFB1 was enriched in the nuclei of hepatocytes with zonal differences in clearance. In the cytoplasm of pericentral hepatocytes, the half-life (t1/2~ 63 min) was much longer compared to periportal hepatocytes of the same lobules (t1/2 ~ 9 min). In addition, nuclear AFB1 from periportal hepatocytes cleared faster compared to the pericentral region. These local differences in AFB1 clearance may be due to the pericentral expression of cytochrome P450 enzymes that activate AFB1 to protein- and DNA-binding metabolites. In conclusion, the present study shows that large spatio-temporal concentration differences exist within the same tissues and its analysis may provide valuable additional information to conventional toxicokinetic studies.


Subject(s)
Aflatoxin B1/pharmacokinetics , Kidney/metabolism , Liver/metabolism , Ochratoxins/pharmacokinetics , Animals , Cytochrome P-450 Enzyme System/metabolism , Half-Life , Hepatocytes/metabolism , Male , Mice , Mice, Inbred C57BL , Microscopy/methods , Spatio-Temporal Analysis , Tissue Distribution
12.
Hepatology ; 73(4): 1531-1550, 2021 04.
Article in English | MEDLINE | ID: mdl-32558958

ABSTRACT

BACKGROUND AND AIMS: Small-molecule flux in tissue microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely fluorescence loss after photoactivation and intravital arbitrary region image correlation spectroscopy. APPROACH AND RESULTS: The results challenge the prevailing "mechano-osmotic" theory of canalicular bile flow. After active transport across hepatocyte membranes, bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts is diffusion augmented by regulatable advection. Photoactivation of fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl)-ether in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. CONCLUSIONS: The liver consists of a diffusion-dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow-augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.


Subject(s)
Bile Canaliculi/diagnostic imaging , Bile Canaliculi/metabolism , Biological Transport, Active/physiology , Intravital Microscopy/methods , Portal Vein/diagnostic imaging , Portal Vein/metabolism , Animals , Bile/metabolism , Bile Acids and Salts/metabolism , Cell Membrane/metabolism , Computer Simulation , Fluorescent Dyes/administration & dosage , Hepatocytes/metabolism , Injections, Intravenous/methods , Mice , Mice, Inbred C57BL , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods
13.
Ann Surg ; 268(1): 134-142, 2018 07.
Article in English | MEDLINE | ID: mdl-28151798

ABSTRACT

OBJECTIVE: To investigate safety and efficacy of temporary portal hemodynamics modulation with a novel percutaneously adjustable vascular ring (MID-AVR) onto a porcine model of 75% hepatectomy. BACKGROUND: Postoperative liver failure is a leading cause of mortality after major hepatectomy. Portal flow modulation is an increasingly accepted concept to prevent postoperative liver failure. Nonetheless, the current strategies have shortcomings. METHODS: Resection was performed under hemodynamic monitoring in 17 large, white pigs allocated into 2 groups. Eight pigs had ring around the portal vein for 3 days with the aim of reducing changes in hemodynamics due to hepatectomy. Analysis of hemodynamics, laboratory, and histopathological parameters was performed. RESULTS: Percutaneous inflation, deflation, and removal of the MID-AVR were safe. Two (25%) pigs in the MID-AVR group and 4 (45%) controls died before day 3 (P = NS). A moderate increase of portal flow rate per liver mass after resection was associated with better survival (P = 0.017). The portocaval pressure gradient was lower after hepatectomy in the MID-AVR group (P = 0.001). Postoperative serum bilirubin levels were lower in the MID-AVR group (P = 0.007 at day 5). In the MID-AVR group, the Ki67 index was significantly higher on day 3 (P = 0.043) and the architectural derangement was lower (P < 0.05). Morphometric quantification of the bile canaliculi revealed a significantly lower number of intersection branches (P < 0.05) and intersection nodes (P < 0.001) on day 7 compared with the preoperative specimen, in the control group. These differences were not found in the ring group. CONCLUSIONS: MID-AVR is safe for portal hemodynamics modulation. It might improve liver regeneration by protecting liver microarchitecture.


Subject(s)
Hepatectomy , Liver Regeneration , Portal Pressure , Portal Vein/surgery , Postoperative Care/instrumentation , Vascular Surgical Procedures/instrumentation , Animals , Female , Liver Failure/etiology , Liver Failure/prevention & control , Postoperative Care/methods , Postoperative Complications/prevention & control , Random Allocation , Swine , Treatment Outcome , Vascular Surgical Procedures/methods
14.
J Anat ; 232(3): 485-496, 2018 03.
Article in English | MEDLINE | ID: mdl-29205328

ABSTRACT

Cirrhosis represents the end-stage of any persistent chronically active liver disease. It is characterized by the complete replacement of normal liver tissue by fibrosis, regenerative nodules, and complete fibrotic vascularized septa. The resulting angioarchitectural distortion contributes to an increasing intrahepatic vascular resistance, impeding liver perfusion and leading to portal hypertension. To date, knowledge on the dynamically evolving pathological changes of the hepatic vasculature during cirrhogenesis remains limited. More specifically, detailed anatomical data on the vascular adaptations during disease development is lacking. To address this need, we studied the 3D architecture of the hepatic vasculature during induction of cirrhogenesis in a rat model. Cirrhosis was chemically induced with thioacetamide (TAA). At predefined time points, the hepatic vasculature was fixed and visualized using a combination of vascular corrosion casting and deep tissue microscopy. Three-dimensional reconstruction and data-fitting enabled cirrhogenic features to extracted at multiple scales, portraying the impact of cirrhosis on the hepatic vasculature. At the macrolevel, we noticed that regenerative nodules severely compressed pliant venous vessels from 12 weeks of TAA intoxication onwards. Especially hepatic veins were highly affected by this compression, with collapsed vessel segments severely reducing perfusion capabilities. At the microlevel, we discovered zone-specific sinusoidal degeneration, with sinusoids located near the surface being more affected than those in the middle of a liver lobe. Our data shed light on and quantify the evolving angioarchitecture during cirrhogenesis. These findings may prove helpful for future targeted invasive interventions.


Subject(s)
Blood Vessels/pathology , Liver Cirrhosis/pathology , Liver/blood supply , Animals , Imaging, Three-Dimensional/methods , Male , Rats , Rats, Wistar
15.
Methods Mol Biol ; 1506: 319-362, 2017.
Article in English | MEDLINE | ID: mdl-27830563

ABSTRACT

In this chapter, we illustrate how three-dimensional liver tissue models can be created from experimental image modalities by utilizing a well-established processing chain of experiments, microscopic imaging, image processing, image analysis and model construction. We describe how key features of liver tissue architecture are quantified and translated into model parameterizations, and show how a systematic iteration of experiments and model simulations often leads to a better understanding of biological phenomena in systems biology and systems medicine.


Subject(s)
Imaging, Three-Dimensional/methods , Liver/diagnostic imaging , Microscopy, Confocal/methods , Models, Biological , Staining and Labeling/methods , Animals , Fluorescent Dyes/chemistry , Immunohistochemistry/instrumentation , Immunohistochemistry/methods , Liver/anatomy & histology , Liver/pathology , Mice , Mice, Knockout , Microscopy, Confocal/instrumentation , Quality Control , Software , Staining and Labeling/instrumentation , Swine
16.
Bioinformatics ; 31(19): 3234-6, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26040455

ABSTRACT

MOTIVATION: TiQuant is a modular software tool for efficient quantification of biological tissues based on volume data obtained by biomedical image modalities. It includes a number of versatile image and volume processing chains tailored to the analysis of different tissue types which have been experimentally verified. TiQuant implements a novel method for the reconstruction of three-dimensional surfaces of biological systems, data that often cannot be obtained experimentally but which is of utmost importance for tissue modelling in systems biology. AVAILABILITY AND IMPLEMENTATION: TiQuant is freely available for non-commercial use at msysbio.com/tiquant. Windows, OSX and Linux are supported. CONTACT: hoehme@uni-leipzig.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Computer Graphics , Image Processing, Computer-Assisted/methods , Software , Systems Biology/methods , Algorithms , Humans , Organ Specificity , Tomography, X-Ray Computed/methods
17.
Arch Toxicol ; 88(5): 1161-83, 2014 May.
Article in English | MEDLINE | ID: mdl-24748404

ABSTRACT

Histological alterations often constitute a fingerprint of toxicity and diseases. The extent to which these alterations are cause or consequence of compromised organ function, and the underlying mechanisms involved is a matter of intensive research. In particular, liver disease is often associated with altered tissue microarchitecture, which in turn may compromise perfusion and functionality. Research in this field requires the development and orchestration of new techniques into standardized processing pipelines that can be used to reproducibly quantify tissue architecture. Major bottlenecks include the lack of robust staining, and adequate reconstruction and quantification techniques. To bridge this gap, we established protocols employing specific antibody combinations for immunostaining, confocal imaging, three-dimensional reconstruction of approximately 100-µm-thick tissue blocks and quantification of key architectural features. We describe a standard procedure termed 'liver architectural staining' for the simultaneous visualization of bile canaliculi, sinusoidal endothelial cells, glutamine synthetase (GS) for the identification of central veins, and DAPI as a nuclear marker. Additionally, we present a second standard procedure entitled 'S-phase staining', where S-phase-positive and S-phase-negative nuclei (stained with BrdU and DAPI, respectively), sinusoidal endothelial cells and GS are stained. The techniques include three-dimensional reconstruction of the sinusoidal and bile canalicular networks from the same tissue block, and robust capture of position, size and shape of individual hepatocytes, as well as entire lobules from the same tissue specimen. In addition to the protocols, we have also established image analysis software that allows relational and hierarchical quantifications of different liver substructures (e.g. cells and vascular branches) and events (e.g. cell proliferation and death). Typical results acquired for routinely quantified parameters in adult mice (C57Bl6/N) include the hepatocyte volume (5,128.3 ± 837.8 µm(3)) and the fraction of the hepatocyte surface in contact with the neighbouring hepatocytes (67.4 ± 6.7 %), sinusoids (22.1 ± 4.8 %) and bile canaliculi (9.9 ± 3.8 %). Parameters of the sinusoidal network that we also routinely quantify include the radius of the sinusoids (4.8 ± 2.25 µm), the branching angle (32.5 ± 11.2°), the length of intersection branches (23.93 ± 5.9 µm), the number of intersection nodes per mm(3) (120.3 × 103 ± 42.1 × 10(3)), the average length of sinusoidal vessel per mm(3) (5.4 × 10(3) ± 1.4 × 10(3)mm) and the percentage of vessel volume in relation to the whole liver volume (15.3 ± 3.9) (mean ± standard deviation). Moreover, the provided parameters of the bile canalicular network are: length of the first-order branches (7.5 ± 0.6 µm), length of the second-order branches (10.9 ± 1.8 µm), length of the dead-end branches (5.9 ± 0.7 µm), the number of intersection nodes per mm(3) (819.1 × 10(3) ± 180.7 × 10(3)), the number of dead-end branches per mm(3) (409.9 × 10(3) ± 95.6 × 10(3)), the length of the bile canalicular network per mm(3) (9.4 × 10(3) ± 0.7 × 10(3) mm) and the percentage of the bile canalicular volume with respect to the total liver volume (3.4 ± 0.005). A particular strength of our technique is that quantitative parameters of hepatocytes and bile canalicular as well as sinusoidal networks can be extracted from the same tissue block. Reconstructions and quantifications performed as described in the current protocols can be used for quantitative mathematical modelling of the underlying mechanisms. Furthermore, protocols are presented for both human and pig livers. The technique is also applicable for both vibratome blocks and conventional paraffin slices.


Subject(s)
Bile Canaliculi/cytology , Image Processing, Computer-Assisted/methods , Liver/blood supply , Staining and Labeling/methods , Animals , Antibody Specificity , Dipeptidyl Peptidase 4/immunology , Hepatocytes/cytology , Humans , Image Processing, Computer-Assisted/instrumentation , Liver/ultrastructure , Male , Mice, Inbred C57BL , Microcirculation , Paraffin Embedding , Quality Control , Reproducibility of Results , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...