Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 1744, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33741998

ABSTRACT

Interferometric scattering microscopy is increasingly employed in biomedical research owing to its extraordinary capability of detecting nano-objects individually through their intrinsic elastic scattering. To significantly improve the signal-to-noise ratio without increasing illumination intensity, we developed photonic resonator interferometric scattering microscopy (PRISM) in which a dielectric photonic crystal (PC) resonator is utilized as the sample substrate. The scattered light is amplified by the PC through resonant near-field enhancement, which then interferes with the <1% transmitted light to create a large intensity contrast. Importantly, the scattered photons assume the wavevectors delineated by PC's photonic band structure, resulting in the ability to utilize a non-immersion objective without significant loss at illumination density as low as 25 W cm-2. An analytical model of the scattering process is discussed, followed by demonstration of virus and protein detection. The results showcase the promise of nanophotonic surfaces in the development of resonance-enhanced interferometric microscopies.


Subject(s)
Microscopy, Interference/instrumentation , Microscopy, Interference/methods , Optics and Photonics/instrumentation , Optics and Photonics/methods , Crystallization , Equipment Design , Gold , Image Processing, Computer-Assisted , Metal Nanoparticles , Nanostructures , Photons , Proteins/isolation & purification , Virion/isolation & purification , Viruses/isolation & purification
2.
Environ Sci Technol ; 53(14): 7996-8005, 2019 Jul 16.
Article in English | MEDLINE | ID: mdl-31269400

ABSTRACT

A microfluidic gradient chamber (MGC) and a homogeneous batch culturing system were used to evaluate whether spatial concentration gradients of the antibiotic ciprofloxacin allow development of greater antibiotic resistance in Escherichia coli strain 307 (E. coli 307) compared to exclusively temporal concentration gradients, as indicated in an earlier study. A linear spatial gradient of ciprofloxacin and Luria-Bertani broth (LB) medium was established and maintained by diffusion over 5 days across a well array in the MGC, with relative concentrations along the gradient of 1.7-7.7× the original minimum inhibitory concentration (MICoriginal). The E. coli biomass increased in wells with lower ciprofloxacin concentrations, and only a low level of resistance to ciprofloxacin was detected in the recovered cells (∼2× MICoriginal). Homogeneous batch culture experiments were performed with the same temporal exposure history to ciprofloxacin concentration, the same and higher initial cell densities, and the same and higher nutrient (i.e., LB) concentrations as in the MGC. In all batch experiments, E. coli 307 developed higher ciprofloxacin resistance after exposure, ranging from 4 to 24× MICoriginal in all replicates. Hence, these results suggest that the presence of spatial gradients appears to reduce the driving force for E. coli 307 adaptation to ciprofloxacin, which suggests that results from batch experiments may over predict the development of antibiotic resistance in natural environments.


Subject(s)
Ciprofloxacin , Escherichia coli Infections , Anti-Bacterial Agents , Drug Resistance, Bacterial , Escherichia coli , Humans , Microbial Sensitivity Tests
3.
Astrobiology ; 19(12): 1442-1458, 2019 12.
Article in English | MEDLINE | ID: mdl-31038352

ABSTRACT

The evolutionarily ancient Aquificales bacterium Sulfurihydrogenibium spp. dominates filamentous microbial mat communities in shallow, fast-flowing, and dysoxic hot-spring drainage systems around the world. In the present study, field observations of these fettuccini-like microbial mats at Mammoth Hot Springs in Yellowstone National Park are integrated with geology, geochemistry, hydrology, microscopy, and multi-omic molecular biology analyses. Strategic sampling of living filamentous mats along with the hot-spring CaCO3 (travertine) in which they are actively being entombed and fossilized has permitted the first direct linkage of Sulfurihydrogenibium spp. physiology and metabolism with the formation of distinct travertine streamer microbial biomarkers. Results indicate that, during chemoautotrophy and CO2 carbon fixation, the 87-98% Sulfurihydrogenibium-dominated mats utilize chaperons to facilitate enzyme stability and function. High-abundance transcripts and proteins for type IV pili and extracellular polymeric substances (EPSs) are consistent with their strong mucus-rich filaments tens of centimeters long that withstand hydrodynamic shear as they become encrusted by more than 5 mm of travertine per day. Their primary energy source is the oxidation of reduced sulfur (e.g., sulfide, sulfur, or thiosulfate) and the simultaneous uptake of extremely low concentrations of dissolved O2 facilitated by bd-type cytochromes. The formation of elevated travertine ridges permits the Sulfurihydrogenibium-dominated mats to create a shallow platform from which to access low levels of dissolved oxygen at the virtual exclusion of other microorganisms. These ridged travertine streamer microbial biomarkers are well preserved and create a robust fossil record of microbial physiological and metabolic activities in modern and ancient hot-spring ecosystems.


Subject(s)
Biodiversity , Extremophiles/physiology , Hot Springs/microbiology , Microbiota/physiology , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Carbon Cycle , DNA, Bacterial/isolation & purification , Extremophiles/isolation & purification , Fimbriae Proteins/genetics , Fimbriae Proteins/metabolism , Fossils/microbiology , Gene Expression Regulation, Bacterial , Genes, Bacterial , Geologic Sediments/microbiology , Oxidation-Reduction , Phylogeny , RNA, Ribosomal, 16S/genetics , Sulfur/metabolism
4.
Sci Rep ; 8(1): 13731, 2018 09 13.
Article in English | MEDLINE | ID: mdl-30213974

ABSTRACT

More than 10% of the global human population is now afflicted with kidney stones, which are commonly associated with other significant health problems including diabetes, hypertension and obesity. Nearly 70% of these stones are primarily composed of calcium oxalate, a mineral previously assumed to be effectively insoluble within the kidney. This has limited currently available treatment options to painful passage and/or invasive surgical procedures. We analyze kidney stone thin sections with a combination of optical techniques, which include bright field, polarization, confocal and super-resolution nanometer-scale auto-fluorescence microscopy. Here we demonstrate using interdisciplinary geology and biology (geobiology) approaches that calcium oxalate stones undergo multiple events of dissolution as they crystallize and grow within the kidney. These observations open a fundamentally new paradigm for clinical approaches that include in vivo stone dissolution and identify high-frequency layering of organic matter and minerals as a template for biomineralization in natural and engineered settings.


Subject(s)
Calcium Oxalate/chemistry , Kidney Calculi/chemistry , Kidney Calculi/therapy , Kidney/chemistry , Calcium Oxalate/adverse effects , Crystallization , Humans , Kidney/diagnostic imaging , Kidney/pathology , Kidney/ultrastructure , Kidney Calculi/pathology , Kidney Calculi/ultrastructure , Microscopy, Confocal , Minerals/chemistry
5.
Microsc Res Tech ; 81(2): 101-114, 2018 Feb.
Article in English | MEDLINE | ID: mdl-27476493

ABSTRACT

The visualization of taxonomically diagnostic features of individual pollen grains can be a challenge for many ecologically and phylogenetically important pollen types. The resolution of traditional optical microscopy is limited by the diffraction of light (250 nm), while high resolution tools such as electron microscopy are limited by laborious preparation and imaging workflows. Airyscan confocal superresolution and structured illumination superresolution (SR-SIM) microscopy are powerful new tools for the study of nanoscale pollen morphology and three-dimensional structure that can overcome these basic limitations. This study demonstrates their utility in capturing morphological details below the diffraction limit of light. Using three distinct pollen morphotypes (Croton hirtus, Dactylis glomerata, and Helianthus sp.) and contrast-enhancing fluorescent staining, we were able to assess the effectiveness of the Airyscan and SR-SIM. We further demonstrate that these new superresolution methods can be easily applied to the study of fossil pollen material.


Subject(s)
Light , Microscopy/methods , Pollen/anatomy & histology , Microscopy, Fluorescence/methods , Pollen/classification
6.
J Contam Hydrol ; 204: 28-39, 2017 09.
Article in English | MEDLINE | ID: mdl-28802767

ABSTRACT

Physical, chemical, and biological interactions between groundwater and sedimentary rock directly control the fundamental subsurface properties such as porosity, permeability, and flow. This is true for a variety of subsurface scenarios, ranging from shallow groundwater aquifers to deeply buried hydrocarbon reservoirs. Microfluidic flow cells are now commonly being used to study these processes at the pore scale in simplified pore structures meant to mimic subsurface reservoirs. However, these micromodels are typically fabricated from glass, silicon, or polydimethylsiloxane (PDMS), and are therefore incapable of replicating the geochemical reactivity and complex three-dimensional pore networks present in subsurface lithologies. To address these limitations, we developed a new microfluidic experimental test bed, herein called the Real Rock-Microfluidic Flow Cell (RR-MFC). A porous 500µm-thick real rock sample of the Clair Group sandstone from a subsurface hydrocarbon reservoir of the North Sea was prepared and mounted inside a PDMS microfluidic channel, creating a dynamic flow-through experimental platform for real-time tracking of subsurface reactive transport. Transmitted and reflected microscopy, cathodoluminescence microscopy, Raman spectroscopy, and confocal laser microscopy techniques were used to (1) determine the mineralogy, geochemistry, and pore networks within the sandstone inserted in the RR-MFC, (2) analyze non-reactive tracer breakthrough in two- and (depth-limited) three-dimensions, and (3) characterize multiphase flow. The RR-MFC is the first microfluidic experimental platform that allows direct visualization of flow and transport in the pore space of a real subsurface reservoir rock sample, and holds potential to advance our understandings of reactive transport and other subsurface processes relevant to pollutant transport and cleanup in groundwater, as well as energy recovery.


Subject(s)
Geologic Sediments/chemistry , Groundwater/chemistry , Hydrology/methods , Microfluidics/methods , Minerals/chemistry , Models, Theoretical , Microscopy , Permeability , Porosity , Spectrum Analysis, Raman
7.
J Microsc ; 267(3): 397-408, 2017 09.
Article in English | MEDLINE | ID: mdl-28594468

ABSTRACT

Second-harmonic generation (SHG) microscopy has gained popularity because of its ability to perform submicron, label-free imaging of noncentrosymmetric biological structures, such as fibrillar collagen in the extracellular matrix environment of various organs with high contrast and specificity. Because SHG is a two-photon coherent scattering process, it is difficult to define a point spread function (PSF) for this modality. Hence, compared to incoherent two-photon processes like two-photon fluorescence, it is challenging to apply the various PSF-engineering methods to improve the spatial resolution to be close to the diffraction limit. Using a synthetic PSF and application of an advanced maximum likelihood estimation (AdvMLE) deconvolution algorithm, we demonstrate restoration of the spatial resolution in SHG images to that closer to the theoretical diffraction limit. The AdvMLE algorithm adaptively and iteratively develops a PSF for the supplied image and succeeds in improving the signal to noise ratio (SNR) for images where the SHG signals are derived from various sources such as collagen in tendon and myosin in heart sarcomere. Approximately 3.5 times improvement in SNR is observed for tissue images at depths of up to ∼480 nm, which helps in revealing the underlying helical structures in collagen fibres with an ∼26% improvement in the amplitude contrast in a fibre pitch. Our approach could be adapted to noisy and low resolution modalities such as micro-nano CT and MRI, impacting precision of diagnosis and treatment of human diseases.


Subject(s)
Likelihood Functions , Microscopy/methods , Algorithms , Animals , Chickens , Image Processing, Computer-Assisted , Imaging, Three-Dimensional/methods , Mice , Microscopy/standards , Myocardium , Tendons
8.
Biotechniques ; 59(5): 295-308, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26554507

ABSTRACT

The ability to image the entire adult mouse heart at high resolution in 3-D would provide enormous advantages in the study of heart disease. However, a technique for imaging nuclear/cellular detail as well as the overall structure of the entire heart in 3-D with minimal effort is lacking. To solve this problem, we modified the benzyl alcohol:benzyl benzoate (BABB) clearing technique by labeling mouse hearts with periodic acid Schiff (PAS) stain. We then imaged the hearts with a combination of two-photon fluorescence microscopy and automated tile-scan imaging/stitching. Utilizing the differential spectral properties of PAS, we could identify muscle and nuclear compartments in the heart. We were also able to visualize the differences between a 3-month-old normal mouse heart and a mouse heart that had undergone heart failure due to the expression of cardiac myosin binding protein-C (cMyBP-C) gene mutation (t/t). Using 2-D and 3-D morphometric analysis, we found that the t/t heart had anomalous ventricular shape, volume, and wall thickness, as well as a disrupted sarcomere pattern. We further validated our approach using decellularized hearts that had been cultured with 3T3 fibroblasts, which were tracked using a nuclear label. We were able to detect the 3T3 cells inside the decellularized intact heart tissue, achieving nuclear/cellular resolution in 3-D. The combination of labeling, clearing, and two-photon microscopy together with tiling eliminates laborious and time-consuming physical sectioning, alignment, and 3-D reconstruction.


Subject(s)
Heart/anatomy & histology , Heart/physiopathology , Imaging, Three-Dimensional/methods , Myocardium/ultrastructure , 3T3 Cells , Animals , Mice , Microscopy, Confocal , Microscopy, Fluorescence
9.
J Vis Exp ; (91): e51824, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25226350

ABSTRACT

An integrated suite of imaging techniques has been applied to determine the three-dimensional (3D) morphology and cellular structure of polyp tissues comprising the Caribbean reef building corals Montastraeaannularis and M. faveolata. These approaches include fluorescence microscopy (FM), serial block face imaging (SBFI), and two-photon confocal laser scanning microscopy (TPLSM). SBFI provides deep tissue imaging after physical sectioning; it details the tissue surface texture and 3D visualization to tissue depths of more than 2 mm. Complementary FM and TPLSM yield ultra-high resolution images of tissue cellular structure. Results have: (1) identified previously unreported lobate tissue morphologies on the outer wall of individual coral polyps and (2) created the first surface maps of the 3D distribution and tissue density of chromatophores and algae-like dinoflagellate zooxanthellae endosymbionts. Spectral absorption peaks of 500 nm and 675 nm, respectively, suggest that M. annularis and M. faveolata contain similar types of chlorophyll and chromatophores. However, M. annularis and M. faveolata exhibit significant differences in the tissue density and 3D distribution of these key cellular components. This study focusing on imaging methods indicates that SBFI is extremely useful for analysis of large mm-scale samples of decalcified coral tissues. Complimentary FM and TPLSM reveal subtle submillimeter scale changes in cellular distribution and density in nondecalcified coral tissue samples. The TPLSM technique affords: (1) minimally invasive sample preparation, (2) superior optical sectioning ability, and (3) minimal light absorption and scattering, while still permitting deep tissue imaging.


Subject(s)
Anthozoa/ultrastructure , Coral Reefs , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Animals , Caribbean Region
10.
Environ Microbiol ; 16(6): 1695-708, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24238218

ABSTRACT

A low-diversity microbial community, dominated by the γ-proteobacterium Halomonas sulfidaeris, was detected in samples of warm saline formation porewater collected from the Cambrian Mt. Simon Sandstone in the Illinois Basin of the North American Midcontinent (1.8 km/5872 ft burial depth, 50°C, pH 8, 181 bars pressure). These highly porous and permeable quartz arenite sandstones are directly analogous to reservoirs around the world targeted for large-scale hydrocarbon extraction, as well as subsurface gas and carbon storage. A new downhole low-contamination subsurface sampling probe was used to collect in situ formation water samples for microbial environmental metagenomic analyses. Multiple lines of evidence suggest that this H. sulfidaeris-dominated subsurface microbial community is indigenous and not derived from drilling mud microbial contamination. Data to support this includes V1-V3 pyrosequencing of formation water and drilling mud, as well as comparison with previously published microbial analyses of drilling muds in other sites. Metabolic pathway reconstruction, constrained by the geology, geochemistry and present-day environmental conditions of the Mt. Simon Sandstone, implies that H. sulfidaeris-dominated subsurface microbial community may utilize iron and nitrogen metabolisms and extensively recycle indigenous nutrients and substrates. The presence of aromatic compound metabolic pathways suggests this microbial community can readily adapt to and survive subsurface hydrocarbon migration.


Subject(s)
Halomonas/genetics , Water Microbiology , Genes, Bacterial , Illinois , Metabolic Networks and Pathways/genetics , Metagenome , Microbiota/genetics , Molecular Sequence Annotation , Molecular Sequence Data , Phylogeny , Quartz , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
11.
Methods ; 66(2): 256-67, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-23871762

ABSTRACT

Injuries and damage to tendons plague both human and equine athletes. At the site of injuries, various cells congregate to repair and re-structure the collagen. Treatments for collagen injury range from simple procedures such as icing and pharmaceutical treatments to more complex surgeries and the implantation of stem cells. Regardless of the treatment, the level of mechanical stimulation incurred by the recovering tendon is crucial. However, for a given tendon injury, it is not known precisely how much of a load should be applied for an effective recovery. Both too much and too little loading of the tendon could be detrimental during recovery. A mapping of the complex local environment imparted to any cell present at the site of a tendon injury may however, convey fundamental insights related to their decision making as a function of applied load. Therefore, fundamentally knowing how cells translate mechanical cues from their external environment into signals regulating their functions during repair is crucial to more effectively treat these types of injuries. In this paper, we studied systems of tendons with a variety of 2-photon-based imaging techniques to examine the local mechanical environment of cells in both normal and injured tendons. These tendons were chemically treated to instigate various extents of injury and in some cases, were injected with stem cells. The results related by each imaging technique distinguish with high contrast and resolution multiple morphologies of the cells' nuclei and the alignment of the collagen during injury. The incorporation of 2-photon FLIM into this study probed new features in the local environment of the nuclei that were not apparent with steady-state imaging. Overall, this paper focuses on horse tendon injury pattern and analysis with different 2-photon confocal modalities useful for wide variety of application in damaged tissues.


Subject(s)
Tendons/pathology , Animals , Cell Tracking , Cells, Cultured , Collagen/metabolism , Fourier Analysis , Horses , Microscopy, Confocal , Microscopy, Fluorescence , Microscopy, Polarization , Stem Cell Transplantation , Stem Cells/metabolism , Tendinopathy/pathology , Tendinopathy/therapy , Tendons/metabolism
12.
PLoS One ; 7(6): e39129, 2012.
Article in English | MEDLINE | ID: mdl-22720050

ABSTRACT

Research on the comparative morphology of pollen grains depends crucially on the application of appropriate microscopy techniques. Information on the performance of microscopy techniques can be used to inform that choice. We compared the ability of several microscopy techniques to provide information on the shape and surface texture of three pollen types with differing morphologies. These techniques are: widefield, apotome, confocal and two-photon microscopy (reflected light techniques), and brightfield and differential interference contrast microscopy (DIC) (transmitted light techniques). We also provide a first view of pollen using super-resolution microscopy. The three pollen types used to contrast the performance of each technique are: Croton hirtus (Euphorbiaceae), Mabea occidentalis (Euphorbiaceae) and Agropyron repens (Poaceae). No single microscopy technique provided an adequate picture of both the shape and surface texture of any of the three pollen types investigated here. The wavelength of incident light, photon-collection ability of the optical technique, signal-to-noise ratio, and the thickness and light absorption characteristics of the exine profoundly affect the recovery of morphological information by a given optical microscopy technique. Reflected light techniques, particularly confocal and two-photon microscopy, best capture pollen shape but provide limited information on very fine surface texture. In contrast, transmitted light techniques, particularly differential interference contrast microscopy, can resolve very fine surface texture but provide limited information on shape. Texture comprising sculptural elements that are spaced near the diffraction limit of light (~250 nm; NDL) presents an acute challenge to optical microscopy. Super-resolution structured illumination microscopy provides data on the NDL texture of A. repens that is more comparable to textural data from scanning electron microscopy than any other optical microscopy technique investigated here. Maximizing the recovery of morphological information from pollen grains should lead to more robust classifications, and an increase in the taxonomic precision with which ancient vegetation can be reconstructed.


Subject(s)
Microscopy/methods , Pollen/chemistry
13.
Opt Express ; 18(24): 24983-93, 2010 Nov 22.
Article in English | MEDLINE | ID: mdl-21164843

ABSTRACT

Fourier transform-second harmonic generation (FT-SHG) imaging is used as a technique for evaluating collagenase-induced injury in horse tendons. The differences in collagen fiber organization between normal and injured tendon are quantified. Results indicate that the organization of collagen fibers is regularly oriented in normal tendons and randomly organized in injured tendons. This is further supported through the use of additional metrics, in particular, the number of dark (no/minimal signal) and isotropic (no preferred fiber orientation) regions in the images, and the ratio of forward-to-backward second-harmonic intensity. FT-SHG microscopy is also compared with the conventional polarized light microscopy and is shown to be more sensitive to assessing injured tendons than the latter. Moreover, sample preparation artifacts that affect the quantitative evaluation of collagen fiber organization can be circumvented by using FT-SHG microscopy. The technique has potential as an assessment tool for evaluating the impact of various injuries that affect collagen fiber organization.


Subject(s)
Fibrillar Collagens/analysis , Fibrillar Collagens/chemistry , Fourier Analysis , Microscopy, Polarization/methods , Tendons/pathology , Animals , Horses
14.
J Immunol Methods ; 348(1-2): 18-29, 2009 Aug 31.
Article in English | MEDLINE | ID: mdl-19559026

ABSTRACT

Given the increasing interest in understanding in vivo migration of different cell types, it would be useful to have a simple method for tracking multiple cell populations in animals. Here we evaluated near infrared (NIR) dyes that intercalate into cell membranes as cell tracking labels, using both high-throughput and high-resolution methods. We tracked cells in tissues containing significant autofluorescence. CellVue Burgundy (ex 683/em 707) and CellVue NIR815 (ex 786/em 814) are especially useful because their spectral properties match the laser and detectors of the LI-COR laser scanner. After labeling cells ex vivo and injecting them into tumor-bearing mice, the distribution of cells in tumor and organs could be quantified in tissue sections with high throughput by scanning many slides at once. For example, we compared brain tumor infiltration and organ distribution of naïve and activated lymphocytes in single animals. High-resolution microscopic examination of the same tissues could be done by a relatively inexpensive modification of an epifluorescence microscope using a custom designed diode laser light source. Light emitting diodes that emit 685 nm and 780 nm light allowed microscopic visualization of the NIR labeled cells in tissues. The NIR dye-labeled cells were visualized with a greater signal/noise ratio compared to visible wavelength dyes such as CFSE, because of the low levels of autofluorescence in the NIR range. We also describe a simple modification of immunohistochemical procedures that allows combined visualization of the hydrophobic NIR dyes and antibody probes of cell markers in unfixed tissue. In combination these techniques will facilitate cell tracking in vivo.


Subject(s)
Cell Membrane/chemistry , Cell Movement , Fluorescent Dyes/chemistry , Microscopy, Confocal/methods , Microscopy, Fluorescence/methods , Animals , Cell Line, Tumor , Cell Membrane/metabolism , Fluorescent Dyes/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Infrared Rays , Lymph Nodes/cytology , Lymph Nodes/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Spleen/cytology , Spleen/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...