Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2367, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531868

ABSTRACT

The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.


Subject(s)
Signal Transduction , Zebrafish , Pregnancy , Mice , Animals , Female , Humans , Proteins , Mechanistic Target of Rapamycin Complex 1 , Diet
3.
Nat Commun ; 14(1): 3060, 2023 05 27.
Article in English | MEDLINE | ID: mdl-37244931

ABSTRACT

Formation of oriented myofibrils is a key event in musculoskeletal development. However, the mechanisms that drive myocyte orientation and fusion to control muscle directionality in adults remain enigmatic. Here, we demonstrate that the developing skeleton instructs the directional outgrowth of skeletal muscle and other soft tissues during limb and facial morphogenesis in zebrafish and mouse. Time-lapse live imaging reveals that during early craniofacial development, myoblasts condense into round clusters corresponding to future muscle groups. These clusters undergo oriented stretch and alignment during embryonic growth. Genetic perturbation of cartilage patterning or size disrupts the directionality and number of myofibrils in vivo. Laser ablation of musculoskeletal attachment points reveals tension imposed by cartilage expansion on the forming myofibers. Application of continuous tension using artificial attachment points, or stretchable membrane substrates, is sufficient to drive polarization of myocyte populations in vitro. Overall, this work outlines a biomechanical guidance mechanism that is potentially useful for engineering functional skeletal muscle.


Subject(s)
Muscle, Skeletal , Zebrafish , Animals , Mice , Zebrafish/genetics , Muscle, Skeletal/physiology , Myofibrils/physiology , Morphogenesis , Myoblasts/physiology
4.
Nat Commun ; 14(1): 3092, 2023 05 29.
Article in English | MEDLINE | ID: mdl-37248239

ABSTRACT

In this study we use comparative genomics to uncover a gene with uncharacterized function (1700011H14Rik/C14orf105/CCDC198), which we hereby name FAME (Factor Associated with Metabolism and Energy). We observe that FAME shows an unusually high evolutionary divergence in birds and mammals. Through the comparison of single nucleotide polymorphisms, we identify gene flow of FAME from Neandertals into modern humans. We conduct knockout experiments on animals and observe altered body weight and decreased energy expenditure in Fame knockout animals, corresponding to genome-wide association studies linking FAME with higher body mass index in humans. Gene expression and subcellular localization analyses reveal that FAME is a membrane-bound protein enriched in the kidneys. Although the gene knockout results in structurally normal kidneys, we detect higher albumin in urine and lowered ferritin in the blood. Through experimental validation, we confirm interactions between FAME and ferritin and show co-localization in vesicular and plasma membranes.


Subject(s)
Energy Metabolism , Genome-Wide Association Study , Animals , Humans , Body Weight , Energy Metabolism/genetics , Ferritins/genetics , Kidney , Neanderthals
5.
Nat Commun ; 13(1): 6949, 2022 11 14.
Article in English | MEDLINE | ID: mdl-36376278

ABSTRACT

There are major differences in duration and scale at which limb development and regeneration proceed, raising the question to what extent regeneration is a recapitulation of development. We address this by analyzing skeletal elements using a combination of micro-CT imaging, molecular profiling and clonal cell tracing. We find that, in contrast to development, regenerative skeletal growth is accomplished based entirely on cartilage expansion prior to ossification, not limiting the transversal cartilage expansion and resulting in bulkier skeletal parts. The oriented extension of salamander cartilage and bone appear similar to the development of basicranial synchondroses in mammals, as we found no evidence for cartilage stem cell niches or growth plate-like structures during neither development nor regeneration. Both regenerative and developmental ossification in salamanders start from the cortical bone and proceeds inwards, showing the diversity of schemes for the synchrony of cortical and endochondral ossification among vertebrates.


Subject(s)
Osteogenesis , Urodela , Animals , Bone and Bones , Cartilage , Cell Division , Mammals
6.
EMBO J ; 41(17): e108780, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35815410

ABSTRACT

Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.


Subject(s)
Neural Crest , Schwann Cells , Cell Differentiation/physiology , Neurogenesis/physiology , Peripheral Nerves , Schwann Cells/metabolism
7.
Curr Biol ; 32(12): 2596-2609.e7, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35561678

ABSTRACT

Reef-building corals are endangered animals with a complex colonial organization. Physiological mechanisms connecting multiple polyps and integrating them into a coral colony are still enigmatic. Using live imaging, particle tracking, and mathematical modeling, we reveal how corals connect individual polyps and form integrated polyp groups via species-specific, complex, and stable networks of currents at their surface. These currents involve surface mucus of different concentrations, which regulate joint feeding of the colony. Inside the coral, within the gastrovascular system, we expose the complexity of bidirectional branching streams that connect individual polyps. This system of canals extends the surface area by 4-fold and might improve communication, nutrient supply, and symbiont transfer. Thus, individual polyps integrate via complex liquid dynamics on the surface and inside the colony.


Subject(s)
Anthozoa , Animals , Anthozoa/physiology , Coral Reefs , Environment , Species Specificity
8.
Nat Commun ; 13(1): 2901, 2022 05 25.
Article in English | MEDLINE | ID: mdl-35614045

ABSTRACT

Adrenal glands are the major organs releasing catecholamines and regulating our stress response. The mechanisms balancing generation of adrenergic chromaffin cells and protecting against neuroblastoma tumors are still enigmatic. Here we revealed that serotonin (5HT) controls the numbers of chromaffin cells by acting upon their immediate progenitor "bridge" cells via 5-hydroxytryptamine receptor 3A (HTR3A), and the aggressive HTR3Ahigh human neuroblastoma cell lines reduce proliferation in response to HTR3A-specific agonists. In embryos (in vivo), the physiological increase of 5HT caused a prolongation of the cell cycle in "bridge" progenitors leading to a smaller chromaffin population and changing the balance of hormones and behavioral patterns in adulthood. These behavioral effects and smaller adrenals were mirrored in the progeny of pregnant female mice subjected to experimental stress, suggesting a maternal-fetal link that controls developmental adaptations. Finally, these results corresponded to a size-distribution of adrenals found in wild rodents with different coping strategies.


Subject(s)
Chromaffin Cells , Neuroblastoma , Adrenal Glands/metabolism , Animals , Catecholamines/metabolism , Chromaffin Cells/metabolism , Female , Mice , Neuroblastoma/metabolism , Pregnancy , Serotonin/metabolism
9.
J Neurosci Res ; 99(10): 2540-2557, 2021 10.
Article in English | MEDLINE | ID: mdl-34184294

ABSTRACT

The autonomic portion of the peripheral nervous system orchestrates tissue homeostasis through direct innervation of internal organs, and via release of adrenalin and noradrenalin into the blood flow. The developmental mechanisms behind the formation of autonomic neurons and chromaffin cells are not fully understood. Using genetic tracing, we discovered that a significant proportion of sympathetic neurons in zebrafish originates from Schwann cell precursors (SCPs) during a defined period of embryonic development. Moreover, SCPs give rise to the main portion of the chromaffin cells, as well as to a significant proportion of enteric and other autonomic neurons associated with internal organs. The conversion of SCPs into neuronal and chromaffin cells is ErbB receptor dependent, as the pharmacological inhibition of the ErbB pathway effectively perturbed this transition. Finally, using genetic ablations, we revealed that SCPs producing neurons and chromaffin cells migrate along spinal motor axons to reach appropriate target locations. This study reveals the evolutionary conservation of SCP-to-neuron and SCP-to-chromaffin cell transitions over significant growth periods in fish and highlights relevant cellular-genetic mechanisms. Based on this, we anticipate that multipotent SCPs might be present in postnatal vertebrate tissues, retaining the capacity to regenerate autonomic neurons and chromaffin cells.


Subject(s)
Cell Movement/physiology , Neural Stem Cells/physiology , Neurogenesis/physiology , Schwann Cells/physiology , Sympathoadrenal System/physiology , Amino Acid Sequence , Animals , Animals, Genetically Modified , Sympathoadrenal System/cytology , Zebrafish
10.
Nat Genet ; 53(5): 694-706, 2021 05.
Article in English | MEDLINE | ID: mdl-33833454

ABSTRACT

Characterization of the progression of cellular states during human embryogenesis can provide insights into the origin of pediatric diseases. We examined the transcriptional states of neural crest- and mesoderm-derived lineages differentiating into adrenal glands, kidneys, endothelium and hematopoietic tissue between post-conception weeks 6 and 14 of human development. Our results reveal transitions connecting the intermediate mesoderm and progenitors of organ primordia, the hematopoietic system and endothelial subtypes. Unexpectedly, by using a combination of single-cell transcriptomics and lineage tracing, we found that intra-adrenal sympathoblasts at that stage are directly derived from nerve-associated Schwann cell precursors, similarly to local chromaffin cells, whereas the majority of extra-adrenal sympathoblasts arise from the migratory neural crest. In humans, this process persists during several weeks of development within the large intra-adrenal ganglia-like structures, which may also serve as reservoirs of originating cells in neuroblastoma.


Subject(s)
Cell Lineage , Embryo, Mammalian/metabolism , Neuroblastoma/embryology , Neuroblastoma/genetics , Single-Cell Analysis , Sympathoadrenal System/embryology , Transcriptome/genetics , Animals , Chromaffin Cells/metabolism , Chromaffin Cells/pathology , Cluster Analysis , Embryonic Development , Gene Expression Regulation, Developmental , Gene Expression Regulation, Neoplastic , Humans , Infant , Mice , Neural Stem Cells/metabolism , Neuroblastoma/pathology , Schwann Cells/metabolism , Schwann Cells/pathology , Tumor Microenvironment
12.
Elife ; 92020 10 16.
Article in English | MEDLINE | ID: mdl-33063669

ABSTRACT

Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


Subject(s)
Cell Differentiation , Cell Proliferation , Chondrocytes/metabolism , Growth Plate/growth & development , Osteogenesis , Animals , Biomechanical Phenomena , Mice , Mice, Inbred C57BL , Rats , Rats, Sprague-Dawley , Stress, Mechanical
13.
Nat Commun ; 11(1): 4816, 2020 09 23.
Article in English | MEDLINE | ID: mdl-32968047

ABSTRACT

Understanding cell types and mechanisms of dental growth is essential for reconstruction and engineering of teeth. Therefore, we investigated cellular composition of growing and non-growing mouse and human teeth. As a result, we report an unappreciated cellular complexity of the continuously-growing mouse incisor, which suggests a coherent model of cell dynamics enabling unarrested growth. This model relies on spatially-restricted stem, progenitor and differentiated populations in the epithelial and mesenchymal compartments underlying the coordinated expansion of two major branches of pulpal cells and diverse epithelial subtypes. Further comparisons of human and mouse teeth yield both parallelisms and differences in tissue heterogeneity and highlight the specifics behind growing and non-growing modes. Despite being similar at a coarse level, mouse and human teeth reveal molecular differences and species-specific cell subtypes suggesting possible evolutionary divergence. Overall, here we provide an atlas of human and mouse teeth with a focus on growth and differentiation.


Subject(s)
Cell Differentiation , Stem Cells/cytology , Tooth/cytology , Tooth/growth & development , Adolescent , Adult , Animals , Cell Differentiation/genetics , Epithelial Cells , Female , Gene Expression Regulation, Developmental , Genetic Heterogeneity , Humans , Incisor/cytology , Incisor/growth & development , Male , Mesoderm/cytology , Mesoderm/growth & development , Mesoderm/metabolism , Mice , Mice, Inbred C57BL , Models, Animal , Molar/cytology , Molar/growth & development , Odontoblasts , Young Adult
14.
Proc Natl Acad Sci U S A ; 116(30): 15068-15073, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31285319

ABSTRACT

Immature multipotent embryonic peripheral glial cells, the Schwann cell precursors (SCPs), differentiate into melanocytes, parasympathetic neurons, chromaffin cells, and dental mesenchymal populations. Here, genetic lineage tracing revealed that, during murine embryonic development, some SCPs detach from nerve fibers to become mesenchymal cells, which differentiate further into chondrocytes and mature osteocytes. This occurred only during embryonic development, producing numerous craniofacial and trunk skeletal elements, without contributing to development of the appendicular skeleton. Formation of chondrocytes from SCPs also occurred in zebrafish, indicating evolutionary conservation. Our findings reveal multipotency of SCPs, providing a developmental link between the nervous system and skeleton.


Subject(s)
Bone and Bones/cytology , Cell Lineage/genetics , Chondrocytes/cytology , Mesenchymal Stem Cells/cytology , Nerve Tissue/cytology , Schwann Cells/cytology , Animals , Biomarkers/metabolism , Bone and Bones/embryology , Bone and Bones/metabolism , Cell Differentiation , Chondrocytes/metabolism , Chromaffin Cells/cytology , Chromaffin Cells/metabolism , Embryo, Mammalian , Embryo, Nonmammalian , Embryonic Development , Gene Expression , Melanocytes/cytology , Melanocytes/metabolism , Mesenchymal Stem Cells/metabolism , Mice , Multipotent Stem Cells/cytology , Multipotent Stem Cells/metabolism , Myelin Proteolipid Protein/genetics , Myelin Proteolipid Protein/metabolism , Nerve Fibers/metabolism , Nerve Tissue/embryology , Nerve Tissue/metabolism , Neural Crest/cytology , Neural Crest/growth & development , Neural Crest/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Neuroglia/cytology , Neuroglia/metabolism , Neurons/cytology , Neurons/metabolism , Osteocytes/cytology , Osteocytes/metabolism , SOXE Transcription Factors/genetics , SOXE Transcription Factors/metabolism , Schwann Cells/metabolism , Zebrafish/embryology , Zebrafish/genetics , Zebrafish/metabolism
15.
Science ; 364(6444)2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31171666

ABSTRACT

Neural crest cells are embryonic progenitors that generate numerous cell types in vertebrates. With single-cell analysis, we show that mouse trunk neural crest cells become biased toward neuronal lineages when they delaminate from the neural tube, whereas cranial neural crest cells acquire ectomesenchyme potential dependent on activation of the transcription factor Twist1. The choices that neural crest cells make to become sensory, glial, autonomic, or mesenchymal cells can be formalized as a series of sequential binary decisions. Each branch of the decision tree involves initial coactivation of bipotential properties followed by gradual shifts toward commitment. Competing fate programs are coactivated before cells acquire fate-specific phenotypic traits. Determination of a specific fate is achieved by increased synchronization of relevant programs and concurrent repression of competing fate programs.


Subject(s)
Gene Expression Regulation, Developmental , Mesenchymal Stem Cells/cytology , Neural Crest/cytology , Neural Crest/embryology , Neural Stem Cells/cytology , Neurogenesis/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Lineage , Mesenchymal Stem Cells/metabolism , Mice , Mice, Mutant Strains , Nerve Tissue Proteins/metabolism , Neural Crest/metabolism , Neural Stem Cells/metabolism , Neural Tube/cytology , Neural Tube/embryology , Neuroglia/cytology , Neurons/cytology , Nuclear Proteins/metabolism , Single-Cell Analysis , Twist-Related Protein 1/metabolism
16.
Nature ; 567(7747): 234-238, 2019 03.
Article in English | MEDLINE | ID: mdl-30814736

ABSTRACT

Longitudinal bone growth in children is sustained by growth plates, narrow discs of cartilage that provide a continuous supply of chondrocytes for endochondral ossification1. However, it remains unknown how this supply is maintained throughout childhood growth. Chondroprogenitors in the resting zone are thought to be gradually consumed as they supply cells for longitudinal growth1,2, but this model has never been proved. Here, using clonal genetic tracing with multicolour reporters and functional perturbations, we demonstrate that longitudinal growth during the fetal and neonatal periods involves depletion of chondroprogenitors, whereas later in life, coinciding with the formation of the secondary ossification centre, chondroprogenitors acquire the capacity for self-renewal, resulting in the formation of large, stable monoclonal columns of chondrocytes. Simultaneously, chondroprogenitors begin to express stem cell markers and undergo symmetric cell division. Regulation of the pool of self-renewing progenitors involves the hedgehog and mammalian target of rapamycin complex 1 (mTORC1) signalling pathways. Our findings indicate that a stem cell niche develops postnatally in the epiphyseal growth plate, which provides a continuous supply of chondrocytes over a prolonged period.


Subject(s)
Chondrocytes/cytology , Clone Cells/cytology , Growth Plate/cytology , Stem Cell Niche/physiology , Aging , Animals , Cartilage/cytology , Cell Self Renewal , Clone Cells/metabolism , Female , Growth Plate/metabolism , Male , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice
17.
Front Mol Neurosci ; 12: 6, 2019.
Article in English | MEDLINE | ID: mdl-30740044

ABSTRACT

In humans, neurosecretory chromaffin cells control a number of important bodily functions, including those related to stress response. Chromaffin cells appear as a distinct cell type at the beginning of midgestation and are the main cellular source of adrenalin and noradrenalin released into the blood stream. In mammals, two different chromaffin organs emerge at a close distance to each other, the adrenal gland and Zuckerkandl organ (ZO). These two structures are found in close proximity to the kidneys and dorsal aorta, in a region where paraganglioma, pheochromocytoma and neuroblastoma originate in the majority of clinical cases. Recent studies showed that the chromaffin cells comprising the adrenal medulla are largely derived from nerve-associated multipotent Schwann cell precursors (SCPs) arriving at the adrenal anlage with the preganglionic nerve fibers, whereas the migratory neural crest cells provide only minor contribution. However, the embryonic origin of the ZO, which differs from the adrenal medulla in a number of aspects, has not been studied in detail. The ZO is composed of chromaffin cells in direct contact with the dorsal aorta and the intraperitoneal cavity and disappears through an autophagy-mediated mechanism after birth. In contrast, the adrenal medulla remains throughout the entire life and furthermore, is covered by the adrenal cortex. Using a combination of lineage tracing strategies with nerve- and cell type-specific ablations, we reveal that the ZO is largely SCP-derived and forms in synchrony with progressively increasing innervation. Moreover, the ZO develops hand-in-hand with the adjacent sympathetic ganglia that coalesce around the dorsal aorta. Finally, we were able to provide evidence for a SCP-contribution to a small but significant proportion of sympathetic neurons of the posterior paraganglia. Thus, this cellular source complements the neural crest, which acts as a main source of sympathetic neurons. Our discovery of a nerve-dependent origin of chromaffin cells and some sympathoblasts may help to understand the origin of pheochromocytoma, paraganglioma and neuroblastoma, all of which are currently thought to be derived from the neural crest or committed sympathoadrenal precursors.

18.
Elife ; 72018 06 13.
Article in English | MEDLINE | ID: mdl-29897331

ABSTRACT

Facial shape is the basis for facial recognition and categorization. Facial features reflect the underlying geometry of the skeletal structures. Here, we reveal that cartilaginous nasal capsule (corresponding to upper jaw and face) is shaped by signals generated by neural structures: brain and olfactory epithelium. Brain-derived Sonic Hedgehog (SHH) enables the induction of nasal septum and posterior nasal capsule, whereas the formation of a capsule roof is controlled by signals from the olfactory epithelium. Unexpectedly, the cartilage of the nasal capsule turned out to be important for shaping membranous facial bones during development. This suggests that conserved neurosensory structures could benefit from protection and have evolved signals inducing cranial cartilages encasing them. Experiments with mutant mice revealed that the genomic regulatory regions controlling production of SHH in the nervous system contribute to facial cartilage morphogenesis, which might be a mechanism responsible for the adaptive evolution of animal faces and snouts.


Subject(s)
Brain/metabolism , Chondrocytes/metabolism , Hedgehog Proteins/genetics , Maxillofacial Development/genetics , Morphogenesis/genetics , Olfactory Mucosa/metabolism , Signal Transduction , Animals , Brain/drug effects , Brain/growth & development , Chondrocytes/cytology , Chondrocytes/drug effects , Collagen Type II/genetics , Collagen Type II/metabolism , Embryo, Mammalian , Face/anatomy & histology , Face/embryology , Facial Bones/cytology , Facial Bones/drug effects , Facial Bones/growth & development , Facial Bones/metabolism , Gene Expression Regulation, Developmental , Hedgehog Proteins/metabolism , Homeobox Protein Nkx-2.2 , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Integrases/genetics , Integrases/metabolism , Mice , Mice, Transgenic , Morphogenesis/drug effects , Mutagens/administration & dosage , Nasal Cartilages/cytology , Nasal Cartilages/drug effects , Nasal Cartilages/growth & development , Nasal Cartilages/metabolism , Olfactory Mucosa/cytology , Olfactory Mucosa/drug effects , Olfactory Mucosa/growth & development , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Tamoxifen/administration & dosage , Transcription Factors/genetics , Transcription Factors/metabolism , Zebrafish Proteins
19.
Science ; 357(6346)2017 07 07.
Article in English | MEDLINE | ID: mdl-28684471

ABSTRACT

Adrenaline is a fundamental circulating hormone for bodily responses to internal and external stressors. Chromaffin cells of the adrenal medulla (AM) represent the main neuroendocrine adrenergic component and are believed to differentiate from neural crest cells. We demonstrate that large numbers of chromaffin cells arise from peripheral glial stem cells, termed Schwann cell precursors (SCPs). SCPs migrate along the visceral motor nerve to the vicinity of the forming adrenal gland, where they detach from the nerve and form postsynaptic neuroendocrine chromaffin cells. An intricate molecular logic drives two sequential phases of gene expression, one unique for a distinct transient cellular state and another for cell type specification. Subsequently, these programs down-regulate SCP-gene and up-regulate chromaffin cell-gene networks. The AM forms through limited cell expansion and requires the recruitment of numerous SCPs. Thus, peripheral nerves serve as a stem cell niche for neuroendocrine system development.


Subject(s)
Adrenal Medulla/embryology , Cell Differentiation , Chromaffin Cells/cytology , Multipotent Stem Cells/cytology , Neural Stem Cells/cytology , Neuroendocrine Cells/cytology , Schwann Cells/cytology , Adrenal Medulla/cytology , Animals , Cell Differentiation/genetics , Cell Movement , Cell Proliferation , Gene Expression Regulation, Developmental , Mice , Mice, Mutant Strains , Myelin Proteolipid Protein/genetics , Neural Crest/cytology , Peripheral Nerves/cytology , SOXE Transcription Factors/genetics , Stem Cell Niche/genetics , Transcription, Genetic
20.
Front Physiol ; 8: 376, 2017.
Article in English | MEDLINE | ID: mdl-28638345

ABSTRACT

Every tissue is composed of multiple cell types that are developmentally, evolutionary and functionally integrated into the unit we call an organ. Teeth, our organs for biting and mastication, are complex and made of many different cell types connected or disconnected in terms of their ontogeny. In general, epithelial and mesenchymal compartments represent the major framework of tooth formation. Thus, they give rise to the two most important matrix-producing populations: ameloblasts generating enamel and odontoblasts producing dentin. However, the real picture is far from this quite simplified view. Diverse pulp cells, the immune system, the vascular system, the innervation and cells organizing the dental follicle all interact, and jointly participate in transforming lifeless matrix into a functional organ that can sense and protect itself. Here we outline the heterogeneity of cell types that inhabit the tooth, and also provide a life history of the major populations. The mouse model system has been indispensable not only for the studies of cell lineages and heterogeneity, but also for the investigation of dental stem cells and tooth patterning during development. Finally, we briefly discuss the evolutionary aspects of cell type diversity and dental tissue integration.

SELECTION OF CITATIONS
SEARCH DETAIL
...