Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (140)2018 10 21.
Article in English | MEDLINE | ID: mdl-30394397

ABSTRACT

Transdermal analysis of glomerular filtration rate (GFR) is an established technique that is used to assess renal function in mouse and rat models of acute kidney injury and chronic kidney disease. The measurement system consists of a miniaturized fluorescence detector that is directly attached to the skin on the back of conscious, freely moving animals, and measures the excretion kinetics of the exogenous GFR tracer, fluorescein-isothiocyanate (FITC) conjugated sinistrin (an inulin analog). This system has been described in detail in rats. However, because of their smaller size, measurement of transcutaneous GFR in mice presents additional technical challenges. In this paper we therefore provide the first detailed practical guide to the use of transdermal GFR monitors in mice based on the combined experience of three different investigators who have been performing this assay in mice over a number of years.


Subject(s)
Glomerular Filtration Rate/immunology , Administration, Cutaneous , Animals , Male , Mice
2.
Kidney Int ; 90(6): 1377-1385, 2016 12.
Article in English | MEDLINE | ID: mdl-27665115

ABSTRACT

Transcutaneous measurement of the glomerular filtration rate (tGFR) is now frequently used in animal studies. tGFR allows consecutive measurements on the same animal, including multiple measurements on a daily basis, because no blood sampling is required. Here we derive and validate a novel kinetic model for the description of transcutaneously measured FITC-Sinistrin excretion kinetics. In contrast to standard 1- to 3-compartment models, our model covers the complete kinetic, including injection and distribution of the tracer in the plasma compartment. Because the model describes the complete progression of the measurement, it allows further refinement by correcting for baseline shifts observed occasionally during measurement. Possible reasons for shifts in the background signal include photo bleaching of the skin, autofluorescence, changes of physiological state of the animals during the measurements, or effects arising from the attachment of the measurement device. Using the new 3-compartment kinetic model with modulated baseline (tGFR3cp.b.m), tGFR measurements in rats can reach comparable precision as those from GFR measurements assessed using a gold standard technique based on constant infusion of a tracer. Moreover, the variability of simultaneous (parallel) measurements, as well as repeated tGFR measurements in the same animals, showed higher precision when tGFR3cp.b.m was compared with the 1-compartment tGFR1cp model.


Subject(s)
Glomerular Filtration Rate , Models, Animal , Models, Theoretical , Animals , Biometry , Kinetics , Male , Rats, Sprague-Dawley
3.
PLoS One ; 9(11): e111734, 2014.
Article in English | MEDLINE | ID: mdl-25423195

ABSTRACT

In dogs and cats an assessment of renal function is often needed, however, existing methods including urine and plasma clearances are invasive, cumbersome and time consuming. This pilot study evaluated the feasibility of a transcutaneous glomerular filtration rate (GFR) measurement in dogs and cats. Additionally the optimal dose and location for the transcutaneous measurement device were investigated. Renal elimination of fluorescein-isothiocyanate-labelled sinistrin (FITC-S) was measured transcutaneously for 4 hours. The procedures were performed in awake, freely moving animals using escalating doses of FITC-S (10 mg/kg, 30 mg/kg, 50 mg/kg) with a wash-out period of at least 24 h in between. Multiple devices were placed on each animal. The resulting FITC-S disappearance curves were visually assessed to determine the most suitable location and the appropriate dose to reach an adequate transcutaneous peak signal for kinetic analysis. In both species 30 mg/kg were adequate for kinetic calculation. The most suitable place for the device was the lateral thoracic wall in dogs and the ventral abdominal wall in cats, respectively. Transcutaneous FITC-S clearance was then repeated using the optimal dose and location and in parallel with an additional plasma sinistrin clearance. Plasma elimination half-lives [min] were 26, 31 and 35, and corresponding transcutaneous elimination half-lives [min] were 26, 34 and 55, respectively in the dogs. Plasma elimination half-lives [min] were 51, 60 and 61, and corresponding transcutaneous elimination half-lives [min] were 75, 96 and 83, respectively in the cats. In conclusion, transcutaneous FITC-S clearance is a feasible method for the assessment of GFR in awake dogs and cats. It is noninvasive, well tolerated and easy to perform even in a clinical setting with results being readily available. A dose of 30 mg/kg of FITC-S seems adequate for kinetic assessment. Further studies are now needed to establish reference values and evaluate transcutaneous renal clearance in various conditions.


Subject(s)
Fluorescent Dyes/pharmacokinetics , Glomerular Filtration Rate/veterinary , Oligosaccharides/pharmacokinetics , Skin/metabolism , Animals , Cats , Dogs , Feasibility Studies , Female , Fluorescent Dyes/adverse effects , Male , Oligosaccharides/adverse effects , Optical Devices , Pilot Projects , Skin/drug effects
4.
Stud Health Technol Inform ; 200: 105-10, 2014.
Article in English | MEDLINE | ID: mdl-24851972

ABSTRACT

Glomerular filtration rate (GFR) is considered the best parameter for the assessment of renal function, being usually determined on the basis of urine or plasma clearance of exogenous renal markers. The common methodology is invasive, time consuming and cumbersome, with multiple blood and/or urine sampling and following laboratory assays required. The method detailed here allows to transcutaneously determine the renal function in awake animals, in a non-invasive and efficient manner by using an electronic device which detects the fluorescence emitted through the skin from the renal marker FITC-Sinistrin. A crucial target has been to improve the fixation of the device, which is dependent on the skin structure. For validation, the technique has been compared with the classical clearance method, and its robustness has been demonstrated in healthy and diseased murine models. Moreover, the method allows sequential measurements in the same individual. Thus progression and recovery of renal failure can be followed. Therefore, its future application in humans would allow an accurate and appropriate prediction and monitoring of patients with established kidney disease over time. Furthermore, it will be possible to observe those patients under other pathological conditions with associated risk of developing renal problems.


Subject(s)
Biomarkers/analysis , Glomerular Filtration Rate/physiology , Oligosaccharides/analysis , Renal Insufficiency/diagnosis , Skin Absorption , Animals , Rats , Reproducibility of Results
5.
Am J Physiol Renal Physiol ; 303(5): F783-8, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22696603

ABSTRACT

Determination of glomerular filtration rate (GFR) in conscious mice is cumbersome for the experimenter and stressful for the animals. Here we report on a simple new technique allowing the transcutaneous measurement of GFR in conscious mice. This approach extends our previously developed technique for rats to mice. The technique relies on a miniaturized device equipped with an internal memory that permits the transcutaneous measurement of the elimination kinetics of the fluorescent renal marker FITC-sinistrin. This device is described and validated compared with FITC-sinistrin plasma clearance in healthy, unilaterally nephrectomized and pcy mice. In summary, we describe a technique allowing the measurement of renal function in freely moving mice independent of blood or urine sampling as well as of laboratory assays.


Subject(s)
Fluoresceins , Glomerular Filtration Rate , Kidney/physiology , Oligosaccharides , Animals , Consciousness , Fluorescent Dyes , Mice , Miniaturization , Oligosaccharides/urine , Urinary Tract Physiological Phenomena
6.
Kidney Int ; 82(3): 314-20, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22513822

ABSTRACT

Constant infusion clearance techniques using exogenous renal markers are considered the gold standard for assessing the glomerular filtration rate. Here we describe a constant infusion clearance method in rats allowing the real-time monitoring of steady-state conditions using an automated closed-loop approach based on the transcutaneous measurement of the renal marker FITC-sinistrin. In order to optimize parameters to reach steady-state conditions as fast as possible, a Matlab-based simulation tool was established. Based on this, a real-time feedback-regulated approach for constant infusion clearance monitoring was developed. This was validated by determining hourly FITC-sinistrin plasma concentrations and the glomerular filtration rate in healthy and unilaterally nephrectomized rats. The transcutaneously assessed FITC-sinistrin fluorescence signal was found to reflect the plasma concentration. Our method allows the precise determination of the onset of steady-state marker concentration. Moreover, the steady state can be monitored and controlled in real time for several hours. This procedure is simple to perform since no urine samples and only one blood sample are required. Thus, we developed a real-time feedback-based system for optimal regulation and monitoring of a constant infusion clearance technique.


Subject(s)
Glomerular Filtration Rate , Kidney Function Tests/methods , Kidney/physiology , Animals , Computer Simulation , Feedback, Physiological , Fluorescein-5-isothiocyanate/administration & dosage , Fluorescein-5-isothiocyanate/pharmacokinetics , Infusions, Parenteral , Male , Models, Biological , Nephrectomy , Oligosaccharides/administration & dosage , Oligosaccharides/blood , Online Systems , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...