Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Astrobiology ; 23(6): 637-647, 2023 06.
Article in English | MEDLINE | ID: mdl-33601926

ABSTRACT

Small satellite technologies, particularly CubeSats, are enabling breakthrough research in space. Over the past 15 years, NASA Ames Research Center has developed and flown half a dozen biological CubeSats in low Earth orbit (LEO) to conduct space biology and astrobiology research investigating the effects of the space environment on microbiological organisms. These studies of the impacts of radiation and reduced gravity on cellular processes include dose-dependent interactions with antimicrobial drugs, measurements of gene expression and signaling, and assessment of radiation damage. BioSentinel, the newest addition to this series, will be the first deep space biological CubeSat, its heliocentric orbit extending far beyond the radiation-shielded environment of low Earth orbit. BioSentinel's 4U biosensing payload, the first living biology space experiment ever conducted beyond the Earth-Moon system, will use a microbial bioassay to assess repair of radiation-induced DNA damage in eukaryotic cells over a duration of 6-12 months. Part of a special collection of articles focused on BioSentinel and its science mission, this article describes the design, development, and testing of the biosensing payload's microfluidics and optical systems, highlighting improvements relative to previous CubeSat life-support and bioanalytical measurement technologies.


Subject(s)
Moon , Space Flight , Earth, Planet , Hypogravity , Exobiology
2.
Astrobiology ; 12(9): 841-53, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22984872

ABSTRACT

We report the first science results from the Space Environment Viability of Organics (SEVO) payload aboard the Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite, which completed its nominal spaceflight mission in May 2011 but continues to acquire data biweekly. The SEVO payload integrates a compact UV-visible-NIR spectrometer, utilizing the Sun as its light source, with a 24-cell sample carousel that houses four classes of vacuum-deposited organic thin films: polycyclic aromatic hydrocarbon (PAH), amino acid, metalloporphyrin, and quinone. The organic films are enclosed in hermetically sealed sample cells that contain one of four astrobiologically relevant microenvironments. Results are reported in this paper for the first 309 days of the mission, during which the samples were exposed for ∼2210 h to direct solar illumination (∼1080 kJ/cm(2) of solar energy over the 124-2600 nm range). Transmission spectra (200-1000 nm) were recorded for each film, at first daily and subsequently every 15 days, along with a solar spectrum and the dark response of the detector array. Results presented here include eight preflight and 16 in-flight spectra of eight SEVO sample cells. Spectra from the PAH thin film in a water-vapor-containing microenvironment indicate measurable change due to solar irradiation in orbit, while three other nominally water-free microenvironments show no appreciable change. The quinone anthrarufin showed high photostability and no significant spectroscopically measurable change in any of the four microenvironments during the same period. The SEVO experiment provides the first in situ real-time analysis of the photostability of organic compounds and biomarkers in orbit.


Subject(s)
Space Flight , Amino Acids/chemistry , Benzoquinones/chemistry , Extraterrestrial Environment , Metalloporphyrins/chemistry , Polycyclic Aromatic Hydrocarbons/analysis , Spectrum Analysis , Ultraviolet Rays
3.
Astrobiology ; 11(10): 951-8, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22091486

ABSTRACT

We report the first telemetered spaceflight science results from the orbiting Space Environment Survivability of Living Organisms (SESLO) experiment, executed by one of the two 10 cm cube-format payloads aboard the 5.5 kg Organism/Organic Exposure to Orbital Stresses (O/OREOS) free-flying nanosatellite. The O/OREOS spacecraft was launched successfully to a 72° inclination, 650 km Earth orbit on 19 November 2010. This satellite provides access to the radiation environment of space in relatively weak regions of Earth's protective magnetosphere as it passes close to the north and south magnetic poles; the total dose rate is about 15 times that in the orbit of the International Space Station. The SESLO experiment measures the long-term survival, germination, and growth responses, including metabolic activity, of Bacillus subtilis spores exposed to the microgravity, ionizing radiation, and heavy-ion bombardment of its high-inclination orbit. Six microwells containing wild-type (168) and six more containing radiation-sensitive mutant (WN1087) strains of dried B. subtilis spores were rehydrated with nutrient medium after 14 days in space to allow the spores to germinate and grow. Similarly, the same distribution of organisms in a different set of microwells was rehydrated with nutrient medium after 97 days in space. The nutrient medium included the redox dye Alamar blue, which changes color in response to cellular metabolic activity. Three-color transmitted intensity measurements of all microwells were telemetered to Earth within days of each of the 48 h growth experiments. We report here on the evaluation and interpretation of these spaceflight data in comparison to delayed-synchronous laboratory ground control experiments.


Subject(s)
Bacillus subtilis/radiation effects , Cosmic Radiation , Extraterrestrial Environment , Spores, Bacterial/radiation effects , Weightlessness , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Culture Techniques , Microbial Viability , Spores, Bacterial/growth & development , Spores, Bacterial/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...