Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Case Rep Neurol ; 12(3): 433-439, 2020.
Article in English | MEDLINE | ID: mdl-33362523

ABSTRACT

Gasperini syndrome (GS), a rare brainstem syndrome, is featured by ipsilateral cranial nerves (CN) V-VIII dysfunction with contralateral hemibody hypoesthesia. While there have been 18 reported cases, the GS definition remains ambiguous. We report a new case and reviewed the clinical features of this syndrome from all published reports to propose a new definition. A 57-year-old man with acute brainstem stroke had right CN V-VIII and XII palsies, left body hypoesthesia and ataxia. Brain MRI showed an acute stroke in the right caudal pons and bilateral cerebellum. After a systematic review, we classified the clinical manifestations into core and associate features based on the frequencies of occurring neurological deficits. We propose that a definitive GS requires the presence of ipsilateral CN VI and VII palsies, plus one or more of the other three core features (ipsilateral CN V, VIII palsies and contralateral hemibody hemihypalgesia). Additionally, GS, similar to Wallenberg's syndrome, represents a spectrum that can have other associated neurological features. The revised definition presented in this study may enlighten physicians with the immediate recognition of the syndrome and help improve clinical localization of the lesions and its management.

2.
Acta Neuropathol Commun ; 1: 55, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-24252754

ABSTRACT

BACKGROUND: The pathological features of the common neurodegenerative conditions, Alzheimer's disease (AD), Parkinson's disease and multiple sclerosis are all known to be associated with iron dysregulation in regions of the brain where the specific pathology is most highly expressed. Iron accumulates in cortical plaques and neurofibrillary tangles in AD where it participates in redox cycling and causes oxidative damage to neurons. To understand these abnormalities in the distribution of iron the expression of proteins that maintain systemic iron balance was investigated in human AD brains and in the APP-transgenic (APP-tg) mouse. RESULTS: Protein levels of hepcidin, the iron-homeostatic peptide, and ferroportin, the iron exporter, were significantly reduced in hippocampal lysates from AD brains. By histochemistry, hepcidin and ferroportin were widely distributed in the normal human brain and co-localised in neurons and astrocytes suggesting a role in regulating iron release. In AD brains, hepcidin expression was reduced and restricted to the neuropil, blood vessels and damaged neurons. In the APP-tg mouse immunoreactivity for ferritin light-chain, the iron storage isoform, was initially distributed throughout the brain and as the disease progressed accumulated in the core of amyloid plaques. In human and mouse tissues, extensive AD pathology with amyloid plaques and severe vascular damage with loss of pericytes and endothelial disruption was seen. In AD brains, hepcidin and ferroportin were associated with haem-positive granular deposits in the region of damaged blood vessels. CONCLUSION: Our results suggest that the reduction in ferroportin levels are likely associated with cerebral ischaemia, inflammation, the loss of neurons due to the well-characterised protein misfolding, senile plaque formation and possibly the ageing process itself. The reasons for the reduction in hepcidin levels are less clear but future investigation could examine circulating levels of the peptide in AD and a possible reduction in the passage of hepcidin across damaged vascular endothelium. Imbalance in the levels and distribution of ferritin light-chain further indicate a failure to utilize and release iron by damaged and degenerating neurons.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Cation Transport Proteins/metabolism , Hepcidins/metabolism , Aged , Aged, 80 and over , Animals , Astrocytes/metabolism , Brain/blood supply , Disease Models, Animal , Disease Progression , Female , Humans , Male , Mice, Transgenic , Middle Aged , Neurons/metabolism , Neuropil/metabolism , Plaque, Amyloid/metabolism , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...