Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 153(6): 064702, 2020 Aug 14.
Article in English | MEDLINE | ID: mdl-35287437

ABSTRACT

We have investigated the adsorption and thermal reaction processes of NO with silicene spontaneously formed on the ZrB2/Si(111) substrate using synchrotron radiation x-ray photoelectron spectroscopy (XPS) and density-functional theory calculations. NO is dissociatively adsorbed on the silicene surface at 300 K. An atomic nitrogen is bonded to three Si atoms most probably by a substitutional adsorption with a Si atom of silicene (N≡Si3). An atomic oxygen is inserted between two Si atoms of the silicene (Si-O-Si). With increasing NO exposure, the two-dimensional honeycomb silicene structure gets destroyed, judging from the decay of typical Si 2p spectra for silicene. After a large amount of NO exposure, the oxidation state of Si becomes Si4+ predominantly, and the intensity of the XPS peaks of the ZrB2 substrate decreases, indicating that complicated silicon oxinitride species have developed three-dimensionally. By heating above 900 K, the oxide species start to desorb from the surface, but nitrogen-bonded species still exist. After flashing at 1053 K, no oxygen species is observed on the surface; SiN species are temporally formed as a metastable species and BN species also start to develop. In addition, the silicene structure is restored on the ZrB2/Si(111) substrate. After prolonged heating at 1053 K, most of nitrogen atoms are bonded to B atoms to form a BN layer at the topmost surface. Thus, BN-covered silicene is formed on the ZrB2/Si(111) substrate by the adsorption of NO at 300 K and prolonged heating at 1053 K.

2.
J Phys Condens Matter ; 27(20): 203201, 2015 May 27.
Article in English | MEDLINE | ID: mdl-25921233

ABSTRACT

The Si counterpart of graphene­silicene­has partially similar but also unique electronic properties that relate to the presence of an extended π electronic system, the flexible crystal structure and the large spin-orbit coupling. Driven by predictions for exceptional electronic properties like the presence of massless charge carriers, the occurrence of the quantum Hall effect and perfect spin-filtering in free-standing, unreconstructed silicene, the recent experimental realization of largely sp(2)-hybridized, Si honeycomb lattices grown on a number of metallic substrates provided the opportunity for the systematic study of the electronic properties of epitaxial silicene phases. Following a discussion of theoretical predictions for free-standing silicene, we review properties of (√3 × âˆš3)-reconstructed, epitaxial silicene phases but with the emphasis on the extensively studied case of silicene on ZrB2(0 0 0 1) thin films. As the experimental results show, the structural and electronic properties are highly interlinked and leave their fingerprint on the chemical states of individual Si atoms as revealed in core-level photoelectron spectra as well as in the valence electronic structure and low-energy interband transitions. With the critical role of substrates and of the chemical stability of epitaxial silicene highlighted, finally, benefits and challenges for any future silicene-based nanoelectronics are being put into perspective.

3.
Sci Technol Adv Mater ; 15(6): 064404, 2014 Dec.
Article in English | MEDLINE | ID: mdl-27877727

ABSTRACT

In its freestanding, yet hypothetical form, the Si counterpart of graphene called silicene is predicted to possess massless Dirac fermions and to exhibit an experimentally accessible quantum spin Hall effect. Such interesting electronic properties are not realized in two-dimensional (2D) Si honeycomb lattices prepared recently on metallic substrates where the crystal and hybrid electronic structures of these 'epitaxial silicene' phases are strongly influenced by the substrate, and thus different from those predicted for isolated 2D structures. While the realization of such low-dimensional Si π materials has hardly been imagined previously, it is evident that the materials science behind silicene remains challenging. In this contribution, we will review our recent results that lead to an enhanced understanding of epitaxial silicene formed on diboride thin films, and discuss the remaining challenges that must be addressed in order to turn Si 2D nanostructures into technologically interesting nanoelectronic materials.

4.
Phys Rev Lett ; 108(24): 245501, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-23004288

ABSTRACT

As the Si counterpart of graphene, silicene may be defined as an at least partially sp2-hybridized, atom-thick honeycomb layer of Si that possesses π-electronic bands. Here we show that two-dimensional, epitaxial silicene forms through surface segregation on zirconium diboride thin films grown on Si wafers. A particular buckling of silicene induced by the epitaxial relationship with the diboride surface leads to a direct π-electronic band gap at the Γ point. These results demonstrate that the buckling and thus the electronic properties of silicene are modified by epitaxial strain.

5.
Chem Commun (Camb) ; 47(45): 12349-51, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22005662

ABSTRACT

Highly-ordered, hydrated adenine multilayer films grown on the surface of highly-oriented pyrolytic graphite, HOPG(0001), display extended electronic states, affording anisotropic band-like charge transport along the π-π stacking direction.


Subject(s)
Adenine/chemistry , Electrons , Graphite , Guanine/chemistry , Photoelectron Spectroscopy , Quantum Theory
6.
J Am Chem Soc ; 133(26): 10054-7, 2011 Jul 06.
Article in English | MEDLINE | ID: mdl-21648389

ABSTRACT

The electronic structure of highly crystalline picene films with a standing-up orientation grown epitaxially on the Ag(110) surface was investigated. Upon exposure to oxgen gas, O(2) molecules incorporate at the interstitial sites within the a-b plane of the film. Features related to the highest three occupied molecular orbitals shift toward a lower binding energy which results in the inactivation of traps and the reduction of the charge injection barrier by about 1 eV. It is suggested that the highest two picene orbitals are inverted due to the strong interactions between the singly occupied oxygen π orbital and the highest occupied orbital of picene.

7.
J Am Chem Soc ; 132(37): 12808-10, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-20806894

ABSTRACT

The intermolecular band dispersion related to the highest occupied molecular orbital in highly ordered, hydrated multilayer films of the DNA base guanine has been measured using photon-energy-dependent ultraviolet photoelectron spectroscopy. A bandwidth of 331 ± 8 meV at room temperature and a small effective mass of about 1.11 times that of a free charge suggest a high intrinsic hole mobility along quasi-one-dimensional stacks formed perpendicular to layered, hydrogen-bound networks.


Subject(s)
Guanine/chemistry , Nucleic Acids/chemistry , Photoelectron Spectroscopy , Carbon/chemistry , Surface Properties , Water/chemistry
8.
J Chem Phys ; 126(9): 094708, 2007 Mar 07.
Article in English | MEDLINE | ID: mdl-17362119

ABSTRACT

The role of nitrogen in the charge transfer and storage capacity of lithium-intercalated heterocyclic oligophenylenes was investigated using photoelectron spectroscopy. The development of new occupied states at low binding energies in the valence band region, as well as core level chemical shifts at both carbon and nitrogen sites, demonstrates partial charge transfer from lithium atoms to the organic component during formation of the intercalated compound. In small compounds, i.e., biphenyl and bipyridine derivatives, the position of the nitrogen heteroatom significantly affects the spacing between gap states in the Li-intercalated film; yet it has minimal effects on the charge storage capacity. In larger, branched systems, the presence of nitrogen in the aromatic system significantly enhances the charge storage capacity while the Li-N bond strength at high intercalation levels is significantly weakened relative to the nitrogen-free derivative. These observations have strong implications towards improved deintercalation processes in organic electrodes in lithium-ion batteries.


Subject(s)
Lithium/chemistry , Pyridines/chemistry , Biphenyl Compounds/chemistry , Spectrum Analysis
9.
J Phys Chem B ; 110(38): 18904-11, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16986882

ABSTRACT

The vibrational coupling in the ground and excited states of positively charged naphthalene, anthracene, tetracene, and pentacene molecules is studied on the basis of a joint experimental and theoretical study of ionization spectra using high-resolution gas-phase photoelectron spectroscopy and first-principles correlated quantum-mechanical calculations. Our theoretical and experimental results reveal that, while the main contribution to relaxation energy in the ground state of oligoacene systems comes from high-energy vibrations, the excited-state relaxation energies show a significant redistribution toward lower-frequency vibrations. A direct correlation is found between the nature of the vibronic interaction and the pattern of the electronic state structure.


Subject(s)
Polycyclic Aromatic Hydrocarbons/chemistry , Anthracenes/chemistry , Electrons , Naphthacenes/chemistry , Naphthalenes/chemistry , Spectrum Analysis , Vibration
10.
J Phys Chem B ; 110(38): 19023-30, 2006 Sep 28.
Article in English | MEDLINE | ID: mdl-16986899

ABSTRACT

Structural and electronic properties of pristine and lithium-intercalated, phenyl-capped aniline dimers as a model for the lithium-polyaniline system have been studied by photoelectron spectroscopy and quantum chemical calculations. It was found that the electronic structure of reduced and oxidized forms of oligoanilines is only weakly affected by isomerism. Upon intercalation, charge transfer from the Li-atoms is remarkable and highly localized at N-atomic sites, where configurations are energetically favored in which both N atoms of the dimers are bound to Li atoms. Conversion of nitrogen sites is different for the two forms of aniline dimers and incomplete up to high intercalation levels, indicating a pronounced role of solid-state effects in the formation of such compounds.

11.
Chemphyschem ; 6(11): 2371-5, 2005 Nov 11.
Article in English | MEDLINE | ID: mdl-16217811

ABSTRACT

We report a Kelvin-probe force microscopy (KPFM) investigation on the structural and electronic properties of different submicron-scale supramolecular architectures of a synthetic nanographene, including extended layers, percolated networks and broken patterns grown from solutions at surfaces. This study made it possible to determine the local work function (WF) of the different pi-conjugated nanostructures adsorbed on mica with a resolution below 10 nm and 0.05 eV. It revealed that the WF strongly depends on the local molecular order at the surface, in particular on the delocalization of electrons in the pi-states, on the molecular orientation at surfaces, on the molecular packing density, on the presence of defects in the film and on the different conformations of the aliphatic peripheral chains that might cover the conjugated core. These results were confirmed by comparing the KPFM-estimated local WF of layers supported on mica, where the molecules are preferentially packed edge-on on the substrate, with the ultraviolet photoelectron spectroscopy microscopically measured WF of layers adsorbed on graphite, where the molecules should tend to assemble face-on at the surface. It appears that local WF studies are of paramount importance for understanding the electronic properties of active organic nanostructures, being therefore fundamental for the building of high-performance organic electronic devices, including field-effect transistors, light-emitting diodes and solar cells.

12.
Chem Commun (Camb) ; (15): 1974-6, 2005 Apr 21.
Article in English | MEDLINE | ID: mdl-15834476

ABSTRACT

Thin films of aligned supramolecular architectures built from newly synthesized thiophene-substituted porphyrins have been processed from solution on surfaces.

14.
J Am Chem Soc ; 126(38): 11889-99, 2004 Sep 29.
Article in English | MEDLINE | ID: mdl-15382924

ABSTRACT

Discotic liquid crystals emerge as very attractive materials for organic-based (opto)electronics as they allow efficient charge and energy transport along self-organized molecular columns. Here, angle-resolved photoelectron spectroscopy (ARUPS) is used to investigate the electronic structure and supramolecular organization of the discotic molecule, hexakis(hexylthio)diquinoxalino[2,3-a:2',3'-c]phenazine, deposited on graphite. The ARUPS data reveal significant changes in the electronic properties when going from disordered to columnar phases, the main feature being a decrease in ionization potential by 1.8 eV following the appearance of new electronic states at low binding energy. This evolution is rationalized by quantum-chemical calculations performed on model stacks containing from two to six molecules, which illustrate the formation of a quasi-band structure with Bloch-like orbitals delocalized over several molecules in the column. The ARUPS data also point to an energy dispersion of the upper pi-bands in the columns by some 1.1 eV, therefore highlighting the strongly delocalized nature of the pi-electrons along the discotic stacks.

15.
Chem Commun (Camb) ; (15): 1702-3, 2004 Aug 07.
Article in English | MEDLINE | ID: mdl-15278145

ABSTRACT

The hole-vibrational coupling in naphthalene is studied using high-resolution gas-phase photoelectron spectroscopy and density functional theory calculations (DFT), and a remarkable increase of the coupling with low-frequency vibrations is observed in the excited states.

SELECTION OF CITATIONS
SEARCH DETAIL
...