Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Neurosci ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830764

ABSTRACT

Human genetics and preclinical studies have identified key contributions of TREM2 to several neurodegenerative conditions, inspiring efforts to modulate TREM2 therapeutically. Here, we characterize the activities of three TREM2 agonist antibodies in multiple mixed-sex mouse models of Alzheimer's Disease (AD) pathology and remyelination. Receptor activation and downstream signaling are explored in vitro, and active dose ranges are determined in vivo based on pharmacodynamic responses from microglia. For mice bearing amyloid-ß (Aß) pathology (PS2APP) or combined Aß and tau pathology (TauPS2APP), chronic TREM2 agonist antibody treatment had limited impact on microglia engagement with pathology, overall pathology burden, or downstream neuronal damage. For mice with demyelinating injuries triggered acutely with lysolecithin, TREM2 agonist antibodies unexpectedly disrupted injury resolution. Likewise, TREM2 agonist antibodies limited myelin recovery for mice experiencing chronic demyelination from cuprizone. We highlight the contributions of dose timing and frequency across models. These results introduce important considerations for future TREM2-targeting approaches.Significance Statement Multiple TREM2 agonist antibodies are investigated in mouse models of Alzheimer's Disease and Multiple Sclerosis. Despite agonism in culture models and after acute dosing in mice, antibodies do not show benefit in overall AD pathology and worsen recovery after demyelination.

2.
iScience ; 26(11): 108362, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37965143

ABSTRACT

Heterozygous mutations in the granulin (GRN) gene are a leading cause of frontotemporal lobar degeneration with TDP-43 aggregates (FTLD-TDP). Polymorphisms in TMEM106B have been associated with disease risk in GRN mutation carriers and protective TMEM106B variants associated with reduced levels of TMEM106B, suggesting that lowering TMEM106B might be therapeutic in the context of FTLD. Here, we tested the impact of full deletion and partial reduction of TMEM106B in mouse and iPSC-derived human cell models of GRN deficiency. TMEM106B deletion did not reverse transcriptomic or proteomic profiles in GRN-deficient microglia, with a few exceptions in immune signaling markers. Neither homozygous nor heterozygous Tmem106b deletion normalized disease-associated phenotypes in Grn -/-mice. Furthermore, Tmem106b reduction by antisense oligonucleotide (ASO) was poorly tolerated in Grn -/-mice. These data provide novel insight into TMEM106B and GRN function in microglia cells but do not support lowering TMEM106B levels as a viable therapeutic strategy for treating FTD-GRN.

3.
Elife ; 122023 08 09.
Article in English | MEDLINE | ID: mdl-37555828

ABSTRACT

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Subject(s)
MAP Kinase Kinase Kinases , Tauopathies , Animals , Humans , Mice , Brain/pathology , Cells, Cultured , Dendritic Spines/pathology , Lipopolysaccharides , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Microglia/metabolism , Neuroinflammatory Diseases/pathology , Sequence Analysis, RNA , Single-Cell Analysis , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Tauopathies/physiopathology
4.
Mol Ther Nucleic Acids ; 32: 773-793, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37346977

ABSTRACT

Antisense oligonucleotide (ASO) therapeutics are being investigated for a broad range of neurological diseases. While ASOs have been effective in the clinic, improving productive ASO internalization into target cells remains a key area of focus in the field. Here, we investigated how the delivery of ASO-loaded lipid nanoparticles (LNPs) affects ASO activity, subcellular trafficking, and distribution in the brain. We show that ASO-LNPs increase ASO activity up to 100-fold in cultured primary brain cells as compared to non-encapsulated ASO. However, in contrast to the widespread ASO uptake and activity observed following free ASO delivery in vivo, LNP-delivered ASOs did not downregulate mRNA levels throughout the brain after intracerebroventricular injection. This lack of activity was likely due to ASO accumulation in cells lining the ventricles and blood vessels. Furthermore, we reveal a formulation-dependent activation of the immune system post dosing, suggesting that LNP encapsulation cannot mask cellular ASO backbone-mediated toxicities. Together, these data provide insights into how LNP encapsulation affects ASO distribution as well as activity in the brain, and a foundation that enables future optimization of brain-targeting ASO-LNPs.

5.
Cell Rep ; 40(8): 111189, 2022 08 23.
Article in English | MEDLINE | ID: mdl-36001972

ABSTRACT

Oligodendrocyte dysfunction has been implicated in the pathogenesis of neurodegenerative diseases, so understanding oligodendrocyte activation states would shed light on disease processes. We identify three distinct activation states of oligodendrocytes from single-cell RNA sequencing (RNA-seq) of mouse models of Alzheimer's disease (AD) and multiple sclerosis (MS): DA1 (disease-associated1, associated with immunogenic genes), DA2 (disease-associated2, associated with genes influencing survival), and IFN (associated with interferon response genes). Spatial analysis of disease-associated oligodendrocytes (DAOs) in the cuprizone model reveals that DA1 and DA2 are established outside of the lesion area during demyelination and that DA1 repopulates the lesion during remyelination. Independent meta-analysis of human single-nucleus RNA-seq datasets reveals that the transcriptional responses of MS oligodendrocytes share features with mouse models. In contrast, the oligodendrocyte activation signature observed in human AD is largely distinct from those observed in mice. This catalog of oligodendrocyte activation states (http://research-pub.gene.com/OligoLandscape/) will be important to understand disease progression and develop therapeutic interventions.


Subject(s)
Demyelinating Diseases , Multiple Sclerosis , Neurodegenerative Diseases , Animals , Cuprizone/therapeutic use , Demyelinating Diseases/pathology , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Multiple Sclerosis/genetics , Multiple Sclerosis/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Oligodendroglia
6.
Nat Aging ; 2(9): 837-850, 2022 09.
Article in English | MEDLINE | ID: mdl-37118504

ABSTRACT

Microglia and complement can mediate neurodegeneration in Alzheimer's disease (AD). By integrative multi-omics analysis, here we show that astrocytic and microglial proteins are increased in TauP301S synapse fractions with age and in a C1q-dependent manner. In addition to microglia, we identified that astrocytes contribute substantially to synapse elimination in TauP301S hippocampi. Notably, we found relatively more excitatory synapse marker proteins in astrocytic lysosomes, whereas microglial lysosomes contained more inhibitory synapse material. C1q deletion reduced astrocyte-synapse association and decreased astrocytic and microglial synapses engulfment in TauP301S mice and rescued synapse density. Finally, in an AD mouse model that combines ß-amyloid and Tau pathologies, deletion of the AD risk gene Trem2 impaired microglial phagocytosis of synapses, whereas astrocytes engulfed more inhibitory synapses around plaques. Together, our data reveal that astrocytes contact and eliminate synapses in a C1q-dependent manner and thereby contribute to pathological synapse loss and that astrocytic phagocytosis can compensate for microglial dysfunction.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/genetics , Complement C1q/genetics , Microglia/metabolism , Astrocytes/metabolism , Synapses/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
7.
Cell Rep ; 37(13): 110158, 2021 12 28.
Article in English | MEDLINE | ID: mdl-34965428

ABSTRACT

Non-neuronal responses in neurodegenerative disease have received increasing attention as important contributors to disease pathogenesis and progression. Here we utilize single-cell RNA sequencing to broadly profile 13 cell types in three different mouse models of Alzheimer disease (AD), capturing the effects of tau-only, amyloid-only, or combined tau-amyloid pathology. We highlight microglia, oligodendrocyte, astrocyte, and T cell responses and compare them across these models. Notably, we identify two distinct transcriptional states for oligodendrocytes emerging differentially across disease models, and we determine their spatial distribution. Furthermore, we explore the impact of Trem2 deletion in the context of combined pathology. Trem2 knockout mice exhibit severely blunted microglial responses to combined tau and amyloid pathology, but responses from non-microglial cell types (oligodendrocytes, astrocytes, and T cells) are relatively unchanged. These results delineate core transcriptional states that are engaged in response to AD pathology, and how they are influenced by a key AD risk gene, Trem2.


Subject(s)
Alzheimer Disease/pathology , Amyloid/chemistry , Astrocytes/pathology , Membrane Glycoproteins/physiology , Oligodendroglia/pathology , Receptors, Immunologic/physiology , T-Lymphocytes/immunology , tau Proteins/metabolism , Alzheimer Disease/immunology , Alzheimer Disease/metabolism , Animals , Astrocytes/immunology , Astrocytes/metabolism , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oligodendroglia/immunology , Oligodendroglia/metabolism
8.
Neurobiol Dis ; 159: 105494, 2021 11.
Article in English | MEDLINE | ID: mdl-34464706

ABSTRACT

The gene GPNMB is known to play roles in phagocytosis and tissue repair, and is upregulated in microglia in many mouse models of neurodegenerative disease as well as in human patients. Nearby genomic variants are associated with both elevated Parkinson's disease (PD) risk and higher expression of this gene, suggesting that inhibiting GPNMB activity might be protective in Parkinson's disease. We tested this hypothesis in three different mouse models of neurological diseases: a remyelination model and two models of alpha-synuclein pathology. We found that Gpnmb deletion had no effect on histological, cellular, behavioral, neurochemical or gene expression phenotypes in any of these models. These data suggest that Gpnmb does not play a major role in the development of pathology or functional defects in these models and that further work is necessary to study its role in the development or progression of Parkinson's disease.


Subject(s)
Eye Proteins/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Parkinson Disease/metabolism , Remyelination/genetics , Substantia Nigra/metabolism , Synucleinopathies/genetics , Aged , Aged, 80 and over , Animals , Brain/metabolism , Brain/pathology , Female , Humans , Male , Mice , Mice, Knockout , Parkinson Disease/pathology , Substantia Nigra/pathology , Synucleinopathies/metabolism , Synucleinopathies/pathology
9.
Neuron ; 109(8): 1283-1301.e6, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33675684

ABSTRACT

Loss-of-function TREM2 mutations strongly increase Alzheimer's disease (AD) risk. Trem2 deletion has revealed protective Trem2 functions in preclinical models of ß-amyloidosis, a prominent feature of pre-diagnosis AD stages. How TREM2 influences later AD stages characterized by tau-mediated neurodegeneration is unclear. To understand Trem2 function in the context of both ß-amyloid and tau pathologies, we examined Trem2 deficiency in the pR5-183 mouse model expressing mutant tau alone or in TauPS2APP mice, in which ß-amyloid pathology exacerbates tau pathology and neurodegeneration. Single-cell RNA sequencing in these models revealed robust disease-associated microglia (DAM) activation in TauPS2APP mice that was amyloid-dependent and Trem2-dependent. In the presence of ß-amyloid pathology, Trem2 deletion further exacerbated tau accumulation and spreading and promoted brain atrophy. Without ß-amyloid pathology, Trem2 deletion did not affect these processes. Therefore, TREM2 may slow AD progression and reduce tau-driven neurodegeneration by restricting the degree to which ß-amyloid facilitates the spreading of pathogenic tau.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Protein Precursor/metabolism , Amyloid/metabolism , Brain/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism , tau Proteins/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Atrophy/genetics , Atrophy/metabolism , Atrophy/pathology , Brain/pathology , Disease Models, Animal , Membrane Glycoproteins/genetics , Mice , Mice, Transgenic , Receptors, Immunologic/genetics , tau Proteins/genetics
10.
Cell Rep ; 34(10): 108835, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33691116

ABSTRACT

In multiple sclerosis (MS) and other neurological diseases, the failure to repair demyelinated lesions contributes to axonal damage and clinical disability. Here, we provide evidence that Mertk, a gene highly expressed by microglia that alters MS risk, is required for efficient remyelination. Compared to wild-type (WT) mice, Mertk-knockout (KO) mice show impaired clearance of myelin debris and remyelination following demyelination. Using single-cell RNA sequencing, we characterize Mertk-influenced responses to cuprizone-mediated demyelination and remyelination across different cell types. Mertk-KO brains show an attenuated microglial response to demyelination but an elevated proportion of interferon (IFN)-responsive microglia. In addition, we identify a transcriptionally distinct subtype of surviving oligodendrocytes specific to demyelinated lesions. The inhibitory effect of myelin debris on remyelination is mediated in part by IFNγ, which further impedes microglial clearance of myelin debris and inhibits oligodendrocyte differentiation. Together, our work establishes a role for Mertk in microglia activation, phagocytosis, and migration during remyelination.


Subject(s)
Microglia/metabolism , Multiple Sclerosis/pathology , c-Mer Tyrosine Kinase/metabolism , Animals , Cell Differentiation , Cell Movement , Cuprizone/pharmacology , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Demyelinating Diseases/chemically induced , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Disease Models, Animal , Interferon-gamma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Multiple Sclerosis/genetics , Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Phagocytosis , Remyelination/drug effects , c-Mer Tyrosine Kinase/deficiency , c-Mer Tyrosine Kinase/genetics
11.
Cell Rep ; 31(13): 107843, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32610143

ABSTRACT

Damage-associated microglia (DAM) profiles observed in Alzheimer's disease (AD)-related mouse models reflect an activation state that could modulate AD risk or progression. To learn whether human AD microglia (HAM) display a similar profile, we develop a method for purifying cell types from frozen cerebrocortical tissues for RNA-seq analysis, allowing better transcriptome coverage than typical single-nucleus RNA-seq approaches. The HAM profile we observe bears little resemblance to the DAM profile. Instead, HAM display an enhanced human aging profile, in addition to other disease-related changes such as APOE upregulation. Analyses of whole-tissue RNA-seq and single-cell/nucleus RNA-seq datasets corroborate our findings and suggest that the lack of DAM response in human microglia occurs specifically in AD tissues, not other neurodegenerative settings. These results, which can be browsed at http://research-pub.gene.com/BrainMyeloidLandscape, provide a genome-wide picture of microglial activation in human AD and highlight considerable differences between mouse models and human disease.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Cellular Senescence/genetics , Microglia/metabolism , Microglia/pathology , Transcriptional Activation/genetics , Aged , Aged, 80 and over , Animals , Databases, Genetic , Female , Frontal Lobe/pathology , Frozen Sections , Gene Expression Profiling , Genetic Predisposition to Disease , Heterografts , Humans , Male , Mice , Monocytes/metabolism , Multiple Sclerosis/pathology , Phenotype , Reproducibility of Results , Risk Factors , Temporal Lobe/pathology
12.
J Neurosci ; 40(9): 1956-1974, 2020 02 26.
Article in English | MEDLINE | ID: mdl-31980586

ABSTRACT

TREM2 is an Alzheimer's disease (AD) risk gene expressed in microglia. To study the role of Trem2 in a mouse model of ß-amyloidosis, we compared PS2APP transgenic mice versus PS2APP mice lacking Trem2 (PS2APP;Trem2ko) at ages ranging from 4 to 22 months. Microgliosis was impaired in PS2APP;Trem2ko mice, with Trem2-deficient microglia showing compromised expression of proliferation/Wnt-related genes and marked accumulation of ApoE. Plaque abundance was elevated in PS2APP;Trem2ko females at 6-7 months; but by 12 or 19-22 months of age, it was notably diminished in female and male PS2APP;Trem2ko mice, respectively. Across all ages, plaque morphology was more diffuse in PS2APP;Trem2ko brains, and the Aß42:Aß40 ratio was elevated. The amount of soluble, fibrillar Aß oligomers also increased in PS2APP;Trem2ko hippocampi. Associated with these changes, axonal dystrophy was exacerbated from 6 to 7 months onward in PS2APP;Trem2ko mice, notwithstanding the reduced plaque load at later ages. PS2APP;Trem2ko mice also exhibited more dendritic spine loss around plaque and more neurofilament light chain in CSF. Thus, aggravated neuritic dystrophy is a more consistent outcome of Trem2 deficiency than amyloid plaque load, suggesting that the microglial packing of Aß into dense plaque is an important neuroprotective activity.SIGNIFICANCE STATEMENT Genetic studies indicate that TREM2 gene mutations confer increased Alzheimer's disease (AD) risk. We studied the effects of Trem2 deletion in the PS2APP mouse AD model, in which overproduction of Aß peptide leads to amyloid plaque formation and associated neuritic dystrophy. Interestingly, neuritic dystrophies were intensified in the brains of Trem2-deficient mice, despite these mice displaying reduced plaque accumulation at later ages (12-22 months). Microglial clustering around plaques was impaired, plaques were more diffuse, and the Aß42:Aß40 ratio and amount of soluble, fibrillar Aß oligomers were elevated in Trem2-deficient brains. These results suggest that the Trem2-dependent compaction of Aß into dense plaques is a protective microglial activity, limiting the exposure of neurons to toxic Aß species.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Axons/pathology , Dendritic Spines/pathology , Membrane Glycoproteins/genetics , Peptide Fragments/metabolism , Plaque, Amyloid/genetics , Receptors, Immunologic/genetics , Trefoil Factor-1/metabolism , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/pathology , Neurites/pathology , Neurofilament Proteins/cerebrospinal fluid , Plaque, Amyloid/pathology
13.
J Neurosci ; 40(5): 958-973, 2020 01 29.
Article in English | MEDLINE | ID: mdl-31831521

ABSTRACT

Cortical circuit activity is shaped by the parvalbumin (PV) and somatostatin (SST) interneurons that inhibit principal excitatory (EXC) neurons and the vasoactive intestinal peptide (VIP) interneurons that suppress activation of other interneurons. To understand the molecular-genetic basis of functional specialization and identify potential drug targets specific to each neuron subtype, we performed a genome wide assessment of both gene expression and splicing across EXC, PV, SST and VIP neurons from male and female mouse brains. These results reveal numerous examples where neuron subtype-specific gene expression, as well as splice-isoform usage, can explain functional differences between neuron subtypes, including in presynaptic plasticity, postsynaptic receptor function, and synaptic connectivity specification. We provide a searchable web resource for exploring differential mRNA expression and splice form usage between excitatory, PV, SST, and VIP neurons (http://research-pub.gene.com/NeuronSubtypeTranscriptomes). This resource, combining a unique new dataset and novel application of analysis methods to multiple relevant datasets, identifies numerous potential drug targets for manipulating circuit function, reveals neuron subtype-specific roles for disease-linked genes, and is useful for understanding gene expression changes observed in human patient brains.SIGNIFICANCE STATEMENT Understanding the basis of functional specialization of neuron subtypes and identifying drug targets for manipulating circuit function requires comprehensive information on cell-type-specific transcriptional profiles. We sorted excitatory neurons and key inhibitory neuron subtypes from mouse brains and assessed differential mRNA expression. We used a genome-wide analysis which not only examined differential gene expression levels but could also detect differences in splice isoform usage. This analysis reveals numerous examples of neuron subtype-specific isoform usage with functional importance, identifies potential drug targets, and provides insight into the neuron subtypes involved in psychiatric disease. We also apply our analysis to two other relevant datasets for comparison, and provide a searchable website for convenient access to the resource.


Subject(s)
Cerebral Cortex/metabolism , Interneurons/metabolism , Neurons/metabolism , Transcriptome , Animals , Cells, Cultured , Female , Hippocampus/metabolism , Male , Mice, Transgenic , Parvalbumins/metabolism , RNA, Messenger/metabolism , Somatostatin/metabolism , Vasoactive Intestinal Peptide/metabolism
14.
Annu Rev Genet ; 53: 263-288, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31518519

ABSTRACT

Advances in human genetics have implicated a growing number of genes in neurodegenerative diseases, providing insight into pathological processes. For Alzheimer disease in particular, genome-wide association studies and gene expression studies have emphasized the pathogenic contributions from microglial cells and motivated studies of microglial function/dysfunction. Here, we summarize recent genetic evidence for microglial involvement in neurodegenerative disease with a focus on Alzheimer disease, for which the evidence is most compelling. To provide context for these genetic discoveries, we discuss how microglia influence brain development and homeostasis, how microglial characteristics change in disease, and which microglial activities likely influence the course of neurodegeneration. In all, we aim to synthesize varied aspects of microglial biology and highlight microglia as possible targets for therapeutic interventions in neurodegenerative disease.


Subject(s)
Brain/growth & development , Microglia/pathology , Microglia/physiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/physiopathology , Aging/physiology , Alzheimer Disease/genetics , Alzheimer Disease/physiopathology , Animals , Brain/physiology , Central Nervous System/metabolism , Complement Pathway, Classical/physiology , Gene Expression Regulation , Genetic Predisposition to Disease , Homeostasis , Humans , Macrophages/physiology , Plaque, Amyloid/physiopathology , Transforming Growth Factor beta/metabolism
15.
Sci Rep ; 8(1): 16725, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425303

ABSTRACT

The aggregation of intracellular tau protein is a major hallmark of Alzheimer's disease (AD). The extent and the stereotypical spread of tau pathology in the AD brain are correlated with cognitive decline during disease progression. Here we present an in-depth analysis of endogenous tau fragmentation in a well-characterized cohort of AD and age-matched control subjects. Using protein mass spectrometry and Edman degradation to interrogate endogenous tau fragments in the human brain, we identified two novel proteolytic sites, G323 and G326, as major tau cleavage events in both normal and AD cortex. These sites are located within the sequence recently identified as the structural core of tau protofilaments, suggesting an inhibitory mechanism of fibril formation. In contrast, a different set of novel cleavages showed a distinct increase in late stage AD. These disease-associated sites are located outside of the protofilament core sequence. We demonstrate that calpain 1 specifically cleaves at both the normal and diseased sites in vitro, and the site selection is conformation-dependent. Monomeric tau is predominantly cleaved at G323/G326 (normal sites), whereas oligomerization increases cleavages at the late-AD-associated sites. The fragmentation patterns specific to disease and healthy states suggest novel regulatory mechanisms of tau aggregation in the human brain.


Subject(s)
Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Calpain/metabolism , Disease Progression , tau Proteins/chemistry , tau Proteins/metabolism , Aged, 80 and over , Brain/metabolism , Female , Humans , Male , Proteolysis
16.
Neuron ; 100(6): 1322-1336.e7, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30392797

ABSTRACT

Synapse loss and Tau pathology are hallmarks of Alzheimer's disease (AD) and other tauopathies, but how Tau pathology causes synapse loss is unclear. We used unbiased proteomic analysis of postsynaptic densities (PSDs) in Tau-P301S transgenic mice to identify Tau-dependent alterations in synapses prior to overt neurodegeneration. Multiple proteins and pathways were altered in Tau-P301S PSDs, including depletion of a set of GTPase-regulatory proteins that leads to actin cytoskeletal defects and loss of dendritic spines. Furthermore, we found striking accumulation of complement C1q in the PSDs of Tau-P301S mice and AD patients. At synapses, C1q decorated perisynaptic membranes, accumulated in correlation with phospho-Tau, and was associated with augmented microglial engulfment of synapses and decline of synapse density. A C1q-blocking antibody inhibited microglial synapse removal in cultured neurons and in Tau-P301S mice, rescuing synapse density. Thus, inhibiting complement-mediated synapse removal by microglia could be a potential therapeutic target for Tau-associated neurodegeneration.


Subject(s)
Antibodies/therapeutic use , Complement C1q/immunology , Synapses/metabolism , Tauopathies/drug therapy , Tauopathies/pathology , tau Proteins/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Animals, Newborn , Cell Differentiation , Cells, Cultured , Complement C1q/metabolism , Complement C1q/ultrastructure , Embryo, Mammalian , Female , Humans , Induced Pluripotent Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Post-Synaptic Density/metabolism , Post-Synaptic Density/pathology , Post-Synaptic Density/ultrastructure , Presenilin-2/genetics , Presenilin-2/metabolism , Prion Proteins/genetics , Prion Proteins/metabolism , Proteome/metabolism , Rats , Synapses/drug effects , Synapses/ultrastructure , Tauopathies/diagnostic imaging , Tauopathies/genetics , tau Proteins/genetics
17.
Cell Rep ; 22(3): 832-847, 2018 01 16.
Article in English | MEDLINE | ID: mdl-29346778

ABSTRACT

Microglia, the CNS-resident immune cells, play important roles in disease, but the spectrum of their possible activation states is not well understood. We derived co-regulated gene modules from transcriptional profiles of CNS myeloid cells of diverse mouse models, including new tauopathy model datasets. Using these modules to interpret single-cell data from an Alzheimer's disease (AD) model, we identified microglial subsets-distinct from previously reported "disease-associated microglia"-expressing interferon-related or proliferation modules. We then analyzed whole-tissue RNA profiles from human neurodegenerative diseases, including a new AD dataset. Correcting for altered cellular composition of AD tissue, we observed elevated expression of the neurodegeneration-related modules, but also modules not implicated using expression profiles from mouse models alone. We provide a searchable, interactive database for exploring gene expression in all these datasets (http://research-pub.gene.com/BrainMyeloidLandscape). Understanding the dimensions of CNS myeloid cell activation in human disease may reveal opportunities for therapeutic intervention.


Subject(s)
Alzheimer Disease/genetics , Brain/metabolism , Microglia/metabolism , Alzheimer Disease/metabolism , Animals , Disease Models, Animal , Humans , Mice
18.
J Cell Biol ; 216(11): 3535-3549, 2017 11 06.
Article in English | MEDLINE | ID: mdl-28887438

ABSTRACT

A propensity for rewiring genetic and epigenetic regulatory networks, thus enabling sustained cell proliferation, suppression of apoptosis, and the ability to evade the immune system, is vital to cancer cell propagation. An increased understanding of how this is achieved is critical for identifying or improving therapeutic interventions. In this study, using acute myeloid leukemia (AML) human cell lines and a custom CRISPR/Cas9 screening platform, we identify the H3K9 methyltransferase SETDB1 as a novel, negative regulator of innate immunity. SETDB1 is overexpressed in many cancers, and loss of this gene in AML cells triggers desilencing of retrotransposable elements that leads to the production of double-stranded RNAs (dsRNAs). This is coincident with induction of a type I interferon response and apoptosis through the dsRNA-sensing pathway. Collectively, our findings establish a unique gene regulatory axis that cancer cells can exploit to circumvent the immune system.


Subject(s)
Gene Silencing , Interferon Type I/metabolism , Leukemia, Myeloid, Acute/enzymology , Protein Methyltransferases/metabolism , Retroelements , Apoptosis , CRISPR-Cas Systems , Cell Line, Tumor , Cell Survival , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Histone-Lysine N-Methyltransferase , Humans , Immunity, Innate , Interferon Type I/immunology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/pathology , Protein Methyltransferases/genetics , RNA Interference , RNA, Double-Stranded/biosynthesis , RNA, Double-Stranded/genetics , Signal Transduction , Time Factors , Transfection , Tumor Escape
19.
J Exp Med ; 214(9): 2611-2628, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-28778989

ABSTRACT

Loss-of-function mutations in GRN cause frontotemporal dementia (FTD) with transactive response DNA-binding protein of 43 kD (TDP-43)-positive inclusions and neuronal ceroid lipofuscinosis (NCL). There are no disease-modifying therapies for either FTD or NCL, in part because of a poor understanding of how mutations in genes such as GRN contribute to disease pathogenesis and neurodegeneration. By studying mice lacking progranulin (PGRN), the protein encoded by GRN, we discovered multiple lines of evidence that PGRN deficiency results in impairment of autophagy, a key cellular degradation pathway. PGRN-deficient mice are sensitive to Listeria monocytogenes because of deficits in xenophagy, a specialized form of autophagy that mediates clearance of intracellular pathogens. Cells lacking PGRN display reduced autophagic flux, and pathological forms of TDP-43 typically cleared by autophagy accumulate more rapidly in PGRN-deficient neurons. Our findings implicate autophagy as a novel therapeutic target for GRN-associated NCL and FTD and highlight the emerging theme of defective autophagy in the broader FTD/amyotrophic lateral sclerosis spectrum of neurodegenerative disease.


Subject(s)
Autophagy/physiology , DNA-Binding Proteins/metabolism , Intercellular Signaling Peptides and Proteins/deficiency , Animals , Granulins , Listeria monocytogenes/immunology , Listeriosis/immunology , Macrophages/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Progranulins , Transcriptome
20.
Nat Immunol ; 18(6): 633-641, 2017 06.
Article in English | MEDLINE | ID: mdl-28459434

ABSTRACT

Microglia and other tissue-resident macrophages within the central nervous system (CNS) have essential roles in neural development, inflammation and homeostasis. However, the molecular pathways underlying their development and function remain poorly understood. Here we report that mice deficient in NRROS, a myeloid-expressed transmembrane protein in the endoplasmic reticulum, develop spontaneous neurological disorders. NRROS-deficient (Nrros-/-) mice show defects in motor functions and die before 6 months of age. Nrros-/- mice display astrogliosis and lack normal CD11bhiCD45lo microglia, but they show no detectable demyelination or neuronal loss. Instead, perivascular macrophage-like myeloid cells populate the Nrros-/- CNS. Cx3cr1-driven deletion of Nrros shows its crucial role in microglial establishment during early embryonic stages. NRROS is required for normal expression of Sall1 and other microglial genes that are important for microglial development and function. Our study reveals a NRROS-mediated pathway that controls CNS-resident macrophage development and affects neurological function.


Subject(s)
Astrocytes/metabolism , Central Nervous System/embryology , Gene Expression Regulation, Developmental , Microglia/metabolism , Myeloid Cells/metabolism , Nervous System Diseases/genetics , Proteins/genetics , Animals , Astrocytes/cytology , Blotting, Western , Central Nervous System/cytology , Flow Cytometry , Immunohistochemistry , Lameness, Animal/genetics , Latent TGF-beta Binding Proteins , Locomotion , Macrophages/cytology , Macrophages/metabolism , Membrane Proteins , Mice , Mice, Knockout , Microglia/cytology , Myeloid Cells/cytology , Posture , Transcription Factors/genetics , Urinary Incontinence/genetics , Urinary Retention/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...