Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Entropy (Basel) ; 26(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38667857

ABSTRACT

In this paper, we unite concepts from Husserlian phenomenology, the active inference framework in theoretical biology, and category theory in mathematics to develop a comprehensive framework for understanding social action premised on shared goals. We begin with an overview of Husserlian phenomenology, focusing on aspects of inner time-consciousness, namely, retention, primal impression, and protention. We then review active inference as a formal approach to modeling agent behavior based on variational (approximate Bayesian) inference. Expanding upon Husserl's model of time consciousness, we consider collective goal-directed behavior, emphasizing shared protentions among agents and their connection to the shared generative models of active inference. This integrated framework aims to formalize shared goals in terms of shared protentions, and thereby shed light on the emergence of group intentionality. Building on this foundation, we incorporate mathematical tools from category theory, in particular, sheaf and topos theory, to furnish a mathematical image of individual and group interactions within a stochastic environment. Specifically, we employ morphisms between polynomial representations of individual agent models, allowing predictions not only of their own behaviors but also those of other agents and environmental responses. Sheaf and topos theory facilitates the construction of coherent agent worldviews and provides a way of representing consensus or shared understanding. We explore the emergence of shared protentions, bridging the phenomenology of temporal structure, multi-agent active inference systems, and category theory. Shared protentions are highlighted as pivotal for coordination and achieving common objectives. We conclude by acknowledging the intricacies stemming from stochastic systems and uncertainties in realizing shared goals.

4.
Front Behav Neurosci ; 15: 647732, 2021.
Article in English | MEDLINE | ID: mdl-34248515

ABSTRACT

In this paper, we introduce an active inference model of ant colony foraging behavior, and implement the model in a series of in silico experiments. Active inference is a multiscale approach to behavioral modeling that is being applied across settings in theoretical biology and ethology. The ant colony is a classic case system in the function of distributed systems in terms of stigmergic decision-making and information sharing. Here we specify and simulate a Markov decision process (MDP) model for ant colony foraging. We investigate a well-known paradigm from laboratory ant colony behavioral experiments, the alternating T-maze paradigm, to illustrate the ability of the model to recover basic colony phenomena such as trail formation after food location discovery. We conclude by outlining how the active inference ant colony foraging behavioral model can be extended and situated within a nested multiscale framework and systems approaches to biology more generally.

7.
Commun Biol ; 3(1): 100, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32139795

ABSTRACT

Natural selection on collective behavior acts on variation among colonies in behavior that is associated with reproductive success. In the red harvester ant (Pogonomyrmex barbatus), variation among colonies in the collective regulation of foraging in response to humidity is associated with colony reproductive success. We used RNA-seq to examine gene expression in the brains of foragers in a natural setting. We find that colonies differ in the expression of neurophysiologically-relevant genes in forager brains, and a fraction of these gene expression differences are associated with two colony traits: sensitivity of foraging activity to humidity, and forager brain dopamine to serotonin ratio. Loci that were correlated with colony behavioral differences were enriched in neurotransmitter receptor signaling & metabolic functions, tended to be more central to coexpression networks, and are evolving under higher protein-coding sequence constraint. Natural selection may shape colony foraging behavior through variation in gene expression.


Subject(s)
Ants/metabolism , Behavior, Animal , Brain/metabolism , Insect Proteins/metabolism , Social Behavior , Animals , Ants/genetics , Computational Biology , Dopamine/metabolism , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , Humidity , Insect Proteins/genetics , RNA-Seq , Selection, Genetic , Serotonin/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...