Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 78(17): 4971-4983, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29997230

ABSTRACT

Persistent bronchial dysplasia is associated with increased risk of developing invasive squamous cell carcinoma (SCC) of the lung. In this study, we hypothesized that differences in gene expression profiles between persistent and regressive bronchial dysplasia would identify cellular processes that underlie progression to SCC. RNA expression arrays comparing baseline biopsies from 32 bronchial sites that persisted/progressed to 31 regressive sites showed 395 differentially expressed genes [ANOVA, FDR ≤ 0.05). Thirty-one pathways showed significantly altered activity between the two groups, many of which were associated with cell-cycle control and proliferation, inflammation, or epithelial differentiation/cell-cell adhesion. Cultured persistent bronchial dysplasia cells exhibited increased expression of Polo-like kinase 1 (PLK1), which was associated with multiple cell-cycle pathways. Treatment with PLK1 inhibitor induced apoptosis and G2-M arrest and decreased proliferation compared with untreated cells; these effects were not seen in normal or regressive bronchial dysplasia cultures. Inflammatory pathway activity was decreased in persistent bronchial dysplasia, and the presence of an inflammatory infiltrate was more common in regressive bronchial dysplasia. Regressive bronchial dysplasia was also associated with trends toward overall increases in macrophages and T lymphocytes and altered polarization of these inflammatory cell subsets. Increased desmoglein 3 and plakoglobin expression was associated with higher grade and persistence of bronchial dysplasia. These results identify alterations in the persistent subset of bronchial dysplasia that are associated with high risk for progression to invasive SCC. These alterations may serve as strong markers of risk and as effective targets for lung cancer prevention.Significance: Gene expression profiling of high-risk persistent bronchial dysplasia reveals changes in cell-cycle control, inflammatory activity, and epithelial differentiation/cell-cell adhesion that may underlie progression to invasive SCC. Cancer Res; 78(17); 4971-83. ©2018 AACR.


Subject(s)
Carcinoma, Squamous Cell/genetics , Inflammation/genetics , Lung Neoplasms/genetics , Precancerous Conditions/genetics , Adult , Aged , Biopsy , Bronchi/metabolism , Bronchi/pathology , Bronchial Diseases/genetics , Bronchial Diseases/pathology , Carcinoma, Squamous Cell/pathology , Cell Cycle Checkpoints/genetics , Cell Cycle Proteins/genetics , Cell Proliferation/genetics , Desmoglein 3/genetics , Disease Progression , Female , Gene Expression Regulation, Neoplastic , Humans , Inflammation/pathology , Lung Neoplasms/pathology , Male , Metaplasia , Middle Aged , Precancerous Conditions/pathology , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , gamma Catenin/genetics , Polo-Like Kinase 1
2.
Cancer Prev Res (Phila) ; 10(11): 671-679, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28851689

ABSTRACT

Prostacyclin (prostaglandin I2, PGI2) overproduction in FVB/N mice prevents the formation of carcinogen and tobacco smoke-induced adenomas, and administration of the oral prostacyclin analogue iloprost to wild-type mice also prevented carcinogen-induced mouse lung adenoma formation. Former smokers taking oral iloprost showed improved bronchial dysplasia histology compared with placebo. Next-generation oral prostacyclin analogues, like treprostinil, were developed for the treatment of pulmonary arterial hypertension (PAH). On the basis of our prior studies with iloprost, we performed preclinical studies examining the ability of treprostinil to chemoprevent urethane-induced murine lung adenocarcinoma. We determined the MTD in chow (prior studies had delivered treprostinil by gavage), and this dose produced serum levels in the experimental animals similar to those found in PAH patients treated with treprostinil. We then examined the chemopreventive efficacy of treprostinil exposure initiated both before (1 week) and after (6 weeks) urethane exposure to better model chemoprevention studies conducted in former smokers. Neither of these dosing strategies prevented murine lung cancer; however, we did detect changes in pulmonary inflammatory cell infiltrate and expression of CXCR4 (a chemokine receptor previously shown to increase in response to treprostinil exposure) in tumor-bearing, treprostinil-treated animals, indicating that the drug was bioavailable. One potential explanation stems from iloprost and treprostinil differentially activating cell surface prostaglandin receptors and intracellular peroxisome proliferator-activated receptors. When murine lung tumor cells were treated with treprostinil, their proliferation rate increased; in contrast, iloprost had no effect on proliferation. Future investigations comparing these two agents will provide insight into iloprost's chemopreventive mechanisms. Cancer Prev Res; 10(11); 671-9. ©2017 AACR.


Subject(s)
Adenocarcinoma/prevention & control , Antihypertensive Agents/therapeutic use , Epoprostenol/analogs & derivatives , Lung Neoplasms/prevention & control , Neoplasms, Experimental/prevention & control , Adenocarcinoma/chemically induced , Adenocarcinoma of Lung , Animals , Biological Availability , Carcinogens/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Evaluation, Preclinical , Epoprostenol/pharmacology , Epoprostenol/therapeutic use , Female , Humans , Lung/cytology , Lung/drug effects , Lung/pathology , Lung Neoplasms/chemically induced , Mice , Mice, Transgenic , Neoplasms, Experimental/chemically induced , Receptors, CXCR4/metabolism , Receptors, Prostaglandin/metabolism , Treatment Outcome , Urethane/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...