Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 43(11): 3183-94, 2004 Mar 23.
Article in English | MEDLINE | ID: mdl-15023068

ABSTRACT

The recently proposed model for the bacteria luciferase-flavin mononucleotide complex identifies a number of critical intermolecular interactions that define a binding platform for the isoalloxazine ring of flavin [Lin, L. Y., Sulea, T., Szittner, R., Vassilyev, V., Purisima, E. O., and Meighen, E. A. (2001) Protein Sci. 10, 1563-1571]. A key interaction involving van der Waals contact between the isopropyl side chain of alphaVal173 and the 7,8-dimethyl benzene plane of the isoalloxazine chromophore represents an important target to test the validity of the proposed model. Here, structure-function analysis of luciferase variants carrying single point mutations at position alpha173 have verified the functional layout of the active site architecture and implicated this site directly in flavin binding. Moreover, a decrease in the stability of the enzyme-bound C4a-hydroperoxyflavin intermediate in the mutants could account for changes in saturation with the fatty aldehyde substrate. A predicted red-shift on mutation of position alpha173 to increase its polarity confirmed that alphaVal173 was an integral component of the chromophore-binding microenvironment. Introduction of mutations in residues that contact the pyrimidine plane of the isoalloxazine chromophore (alphaA75G/C106V) into the alphaV173A, alphaV173C, alphaV173T, and alphaV173S mutants led to the retention of high levels of enzyme activity (10-40% of wild type) and further red-shifted the emission spectra in the triple mutants. The additivity of the mutation-induced red-shifts in the emission wavelength spectrum provides the basis toward engineering luciferase variants that emit different light colors with the proposed flavin-luciferase model complex as a design reference.


Subject(s)
Bacterial Proteins/chemistry , Flavin Mononucleotide/chemistry , Luciferases/chemistry , Luminescent Measurements , Mutagenesis, Site-Directed , Vibrio/enzymology , Bacterial Proteins/genetics , Binding Sites/genetics , Catalysis , Enzyme Stability/genetics , Flavins/chemistry , Kinetics , Luciferases/genetics , Models, Chemical , Models, Molecular , Protein Binding/genetics , Spectrophotometry , Structure-Activity Relationship , Valine/genetics , Vibrio/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...