Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ovarian Res ; 13(1): 22, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32101156

ABSTRACT

BACKGROUND: Fragile X premutation (Amplification of CGG number 55-200) is associated with increased risk for fragile X-Associated Premature Ovarian Insufficiency (FXPOI) in females and fragile X-associated tremor/ataxia syndrome (FXTAS) predominantly in males. Recently, it has been shown that CGG repeats trigger repeat associated non-AUG initiated translation (RAN) of a cryptic polyglycine-containing protein, FMRpolyG. This protein accumulates in ubiquitin-positive inclusions in neuronal brain cells of FXTAS patients and may lead to protein-mediated neurodegeneration. FMRpolyG inclusions were also found in ovary stromal cells of a FXPOI patient. The role of FMRpolyG expression has not been thoroughly examined in folliculogenesis related cells. The main goal of this study is to evaluate whether FMRpolyG accumulates in mural granulosa cells of FMR1 premutation carriers. Following FMRpolyG detection, we aim to examine premutation transfected COV434 as a suitable model used to identify RAN translation functions in FXPOI pathogenesis. RESULTS: FMRpolyG and ubiquitin immunostained mural granulosa cells from six FMR1 premutation carriers demonstrated FMRpolyG aggregates. However, co-localization of FMRpolyG and ubiquitin appeared to vary within the FMR1 premutation carriers' group as three exhibited partial ubiquitin and FMRpolyG double staining and three premutation carriers demonstrated FMRpolyG single staining. None of the granulosa cells from the five control women expressed FMRpolyG. Additionally, human ovarian granulosa tumor, COV434, were transfected with two plasmids; both expressing 99CGG repeats but only one enables FMRpolyG expression. Like in granulosa cells from FMR1 premutation carriers, FMRpolyG aggregates were found only in COV434 transfected with expended CGG repeats and the ability to express FMRpolyG. CONCLUSIONS: Corresponding with previous studies in FXTAS, we demonstrated accumulation of FMRpolyG in mural granulosa cells of FMR1 premutation carriers. We also suggest that following further investigation, the premutation transfected COV434 might be an appropriate model for RAN translation studies. Detecting FMRpolyG accumulation in folliculogenesis related cells supports previous observations and imply a possible common protein-mediated toxic mechanism for both FXPOI and FXTAS.


Subject(s)
Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Granulosa Cells/metabolism , Adult , Animals , Ataxia/genetics , Ataxia/metabolism , Disease Models, Animal , Female , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Humans , Mice , Mice, Transgenic , Mutation , Primary Ovarian Insufficiency/genetics , Primary Ovarian Insufficiency/metabolism , Transfection , Tremor/genetics , Tremor/metabolism
2.
J Assist Reprod Genet ; 37(4): 849-854, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32096109

ABSTRACT

PURPOSE: While FMR1 premutation carriers (CGG 55-200) were shown to have reduced success with IVF treatment (lower oocyte yield), studies reporting on the association between the number of CGG repeats and patients' response to controlled ovarian hyperstimulation (COH) are inconsistent. In the present study, we aim to explore whether the number of CGG repeats in women with premutation in FMR1 gene, undergoing COH for IVF, correlates with COH variables and whether the number of AGG interruptions may function as a "protective factor" by improving the ovarian response to COH. METHODS: Retrospective study, in an academic IVF-PGD unit. Fifty-seven consecutive FMR1 premutation carriers who underwent 285 IVF treatment cycles were included. The numbers of CGG repeats and AGG interruptions were retrieved and correlated to the demographics and COH variables. RESULTS: There were no significant association between the numbers of CGG or the AGG interruptions and the number of oocyte retrieved or the peak estradiol levels. The lack of association was also observed when including all the IVF treatment cycles or only the first or last IVF treatment cycle. Moreover, no associations were found between the number of CGG repeats or AGG interruptions and other COH variables, i.e., duration of stimulation, the total dose of gonadotropin used, or the number of top-quality embryos. CONCLUSIONS: No associations were observed between the number of CGG repeats or AGG interruptions and any of the COH variables. Further studies are required to identify early biomarkers of POI to empower FMR1 premutation carriers with risk assessment tools to consider procedures such as fertility preservation.


Subject(s)
Fertility/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Trinucleotide Repeats/genetics , Adult , Alleles , Female , Fertilization in Vitro , Fragile X Syndrome/epidemiology , Fragile X Syndrome/pathology , Gonadotropins/genetics , Heterozygote , Humans , Ovary/growth & development , Ovary/pathology , Trinucleotide Repeat Expansion/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...