Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 32(15): 153001, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31801126

ABSTRACT

Photocatalysis attracts currently intense research since it can provide efficient routes for generating solar fuels and allows to apply sunlight for an environmentally friendly synthesis of valuable chemical compounds. Accordingly, in future photocatalysis may contribute significantly to a sustainable economy. However, up to now photocatalysis has made it only into some niche applications. The reasons are manifold including too low yields, insufficient stability, and scarce availability of the precious metals and rare earths used in most cases. The design of better systems is the goal of many research activities. They call for a detailed knowledge of the individual steps and the microscopic mechanisms. Time-resolved spectroscopy is a powerful tool to improve our understanding of the individual steps of a photocatalytic process and of the efficiencies and losses associated with them. This allows to address specific weaknesses of the components of a photocatalytic system and to pursue a rational design of the corresponding compounds. In this review an overview is given about what insights can be gained by time-resolved spectroscopy referring mostly to our own results while it has to be stressed that many other groups are also highly successfully working in this area. We restrict ourselves to homogeneous systems which are often easier to analyze and focus on the primary steps occurring after optical excitation. This includes intramolecular relaxation and intersystem crossing in the photosensitizer as well as the first electron transfer step resulting from the interaction of the sensitizer with other components of the system. Ultrafast pump-probe spectroscopy turns out to be particularly helpful in analyzing new photosensitizers based on abundant metals, i.e. copper and iron. These sensitizers can suffer from short lifetimes of the metal-to-ligand charge transfer states which are typically involved in the intermolecular charge transfer processes. The latter are investigated on the pico- to microsecond timescale by quenching experiments making use of a streak camera and by pump-probe spectroscopy applying a YAG-laser system for excitation. The experiments with the streak camera allow to discriminate between oxidative and reductive pathways and to determine the corresponding bimolecular quenching rates which are compared to their diffusion limit to obtain a measure for the quenching efficiency. By applying transient absorption spectroscopy, it is furthermore possible to observe appearing charge transfer products and to determine their concentrations. In this way the efficiency of the electron transfer itself can be deduced and the relevance of lossy quenching events can be estimated.

2.
Org Biomol Chem ; 16(5): 717-732, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29303198

ABSTRACT

A new and efficient domino reaction of 3-chlorochromones with electron-rich aminoheterocycles was developed which allows for a convenient synthesis of a variety of pyrazolo[3,4-b]pyridines, pyrrolo[2,3-b]pyridines, pyrido[2,3-d]pyrimidines and benzofuro[3,2-b]pyridines. The products exhibit strong fluorescence. In addition, they exhibit significant ecto-5'-nucleotidase inhibition properties and cytotoxic behavior.


Subject(s)
5'-Nucleotidase/antagonists & inhibitors , Benzene Derivatives/chemical synthesis , Benzene Derivatives/pharmacology , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyridines/chemical synthesis , Pyridines/pharmacology , 5'-Nucleotidase/chemistry , 5'-Nucleotidase/metabolism , Amines/chemical synthesis , Amines/chemistry , Benzene Derivatives/chemistry , Cell Survival/drug effects , Chromones/chemical synthesis , Chromones/chemistry , Enzyme Inhibitors/chemistry , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/chemistry , GPI-Linked Proteins/metabolism , Halogenation , HeLa Cells , Humans , Molecular Docking Simulation , Pyrazoles/chemistry , Pyridines/chemistry
3.
Inorg Chem ; 57(1): 360-373, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29236487

ABSTRACT

Four homo- and heteroleptic complexes bearing both polypyridyl units and N-heterocyclic carbene (NHC) donor functions are studied as potential noble metal-free photosensitizers. The complexes [FeII(L1)(terpy)][PF6]2, [FeII(L2)2][PF6]2, [FeII(L1)(L3)][PF6]2, and [FeII(L3)2][PF6]2 (terpy = 2,2':6',2″ terpyridine, L1 = 2,6-bis[3-(2,6-diisopropylphenyl)imidazol-2-ylidene]pyridine, L2 = 2,6-bis[3-isopropylimidazol-2-ylidene]pyridine, L3 = 1-(2,2'-bipyridyl)-3-methylimidazol-2-ylidene) contain tridentate ligands of the C^N^C and N^N^C type, respectively, resulting in a Fe-NHC number between two and four. Thorough ground state characterization by single crystal diffraction, electrochemistry, valence-to-core X-ray emission spectroscopy (VtC-XES), and high energy resolution fluorescence detected X-ray absorption near edge structure (HERFD-XANES) in combination with ab initio calculations show a correlation between the geometric and electronic structure of these new compounds and the number of the NHC donor functions. These results serve as a basis for the investigation of the excited states by ultrafast transient absorption spectroscopy, where the lifetime of the 3MLCT states is found to increase with the NHC donor count. The results demonstrate for the first time the close interplay between the number of NHC functionalities in Fe(II) complexes and their photochemical properties, as revealed in a comparison of the activity as photosensitizers in photocatalytic proton reduction.

4.
Angew Chem Int Ed Engl ; 56(6): 1653-1657, 2017 02 01.
Article in English | MEDLINE | ID: mdl-28067442

ABSTRACT

Solar light harvesting by photocatalytic H2 evolution from water could solve the problem of greenhouse gas emission from fossil fuels with alternative clean energy. However, the development of more efficient and robust catalytic systems remains a great challenge for the technological use on a large scale. Here we report the synthesis of a sol-gel prepared mesoporous graphitic carbon nitride (sg-CN) combined with nickel phosphide (Ni2 P) which acts as a superior co-catalyst for efficient photocatalytic H2 evolution by visible light. This integrated system shows a much higher catalytic activity than the physical mixture of Ni2 P and sg-CN or metallic nickel on sg-CN under similar conditions. Time-resolved photoluminescence and electron paramagnetic resonance (EPR) spectroscopic studies revealed that the enhanced carrier transfer at the Ni2 P-sg-CN heterojunction is the prime source for improved activity.

5.
Org Biomol Chem ; 13(2): 583-91, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25381935

ABSTRACT

A series of 5,10-dihydroindolo[3,2-b]indoles was successfully prepared by an efficient two-step strategy based on site-selective Pd-catalyzed cross-coupling reaction with N-methyl-2,3-dibromoindole and subsequent cyclization by two-fold Pd-catalyzed C-N coupling with amines. The products show a strong fluorescence.

6.
Org Biomol Chem ; 12(32): 6151-66, 2014 Aug 28.
Article in English | MEDLINE | ID: mdl-25001519

ABSTRACT

A series of indolo[2,3-b]quinoxaline derivatives were efficiently synthesized from 2,3-dibromoquinoxaline by two pathways. A one-pot approach using Pd-catalyzed two-fold C-N coupling and C-H activation reactions gave indolo[2,3-b]quinoxaline derivatives in good yields, but with limited substrate scope. In addition, a two-step approach to indolo[2,3-b]quinoxalines was developed which is based on Pd-catalyzed Suzuki coupling reactions and subsequent annulation by Pd-catalyzed two-fold C-N coupling with aromatic and aliphatic amines. The electrochemical and photochemical properties of indolo[2,3-b]quinoxaline derivatives were investigated. These studies show that 6-(4-methoxyphenyl)-6H-indolo[2,3-b]quinoxaline showed the highest HOMO energy level and lowest band gap.

7.
J Phys Chem Lett ; 5(8): 1355-60, 2014 Apr 17.
Article in English | MEDLINE | ID: mdl-26269979

ABSTRACT

The reaction pathways of bis-(2-phenylpyridinato-)(2,2'-bipyridine)iridium(III)hexafluorophosphate [Ir(ppy)2(bpy)]PF6 within a photocatalytic water reduction system for hydrogen generation based on an iron-catalyst were investigated by employing time-resolved photoluminescence spectroscopy and time-dependent density functional theory. Electron transfer (ET) from the sacrificial reagent to the photoexcited Ir complex has a surprisingly low probability of 0.4% per collision. Hence, this step limits the efficiency of the overall system. The calculations show that ET takes place only for specific encounter geometries. At the same time, the presence of the iron-catalyst represents an energy loss channel due to a triplet-triplet energy transfer of Dexter type. This loss channel is kept small by the employed concentration ratios, thus favoring the reductive ET necessary for the water reduction. The elucidated reaction mechanisms underline the further need to improve the sun light's energy pathway to the catalyst to increase the efficiency of the photocatalytic system.

8.
Chemistry ; 19(47): 15972-8, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24123302

ABSTRACT

A series of heteroleptic copper(I) complexes with bidentate PP and NN chelate ligands was prepared and successfully applied as photosensitizers in the light-driven production of hydrogen, by using [Fe3(CO)12] as a water-reduction catalyst (WRC). These systems efficiently reduces protons from water/THF/triethylamine mixtures, in which the amine serves as a sacrificial electron donor (SR). Turnover numbers (for H) up to 1330 were obtained with these fully noble-metal-free systems. The new complexes were electrochemically and photophysically characterized. They exhibited a correlation between the lifetimes of the MLCT excited state and their efficiency as photosensitizers in proton-reduction systems. Within these experiments, considerably long excited-state lifetimes of up to 54 µs were observed. Quenching studies with the SR, in the presence and absence of the WRC, showed that intramolecular deactivation was more efficient in the former case, thus suggesting the predominance of an oxidative quenching pathway.

9.
Angew Chem Int Ed Engl ; 52(1): 419-23, 2013 Jan 02.
Article in English | MEDLINE | ID: mdl-23047871

ABSTRACT

Of noble descent: a fully noble-metal-free system for the photocatalytic reduction of water at room temperature has been developed. This system consists of Cu(I) complexes as photosensitizers and [Fe(3)(CO)(12)] as the water-reduction catalyst. The novel Cu-based photosensitizers are relatively inexpensive, readily available from commercial sources, and stable to ambient conditions, thus making them an attractive alternative to the widely used noble-metal based systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...