Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nervenarzt ; 94(12): 1123-1128, 2023 Dec.
Article in German | MEDLINE | ID: mdl-37594495

ABSTRACT

Magnetic resonance imaging (MRI) is of exceptional importance in the diagnostics and monitoring of multiple sclerosis (MS); however, a close interdisciplinary cooperation between neurologists in private practice, (neuro)radiological practices, hospitals or specialized MS centers is only rarely established. In particular, there is a lack of standardized MRI protocols for image acquisition as well as established quality parameters, which guarantee the comparability of MRI records; however, this is a fundamental prerequisite for an effective application of MRI in the treatment of MS patients, e.g., for making the diagnosis or treatment monitoring. To address these challenges a group of neurologists and (neuro)radiologists developed a consensus proposal for standardization of image acquisition, interpretation and transmission of results and for improvement in interdisciplinary cooperation. This pilot project in the metropolitan area of Essen used a modified Delphi process and was based on the most up to date scientific knowledge. The recommendation takes the medical, economic, temporal and practical aspects of MRI in MS into consideration. The model of interdisciplinary cooperation between radiologists and neurologists with the aim of a regional standardization of MRI could serve as an example for other regions of Germany in order to optimize MRI for MS.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/diagnosis , Consensus , Pilot Projects , Magnetic Resonance Imaging/methods , Neurologists
2.
Neurol Res Pract ; 4(1): 55, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36336685

ABSTRACT

BACKGROUND: Therapeutic options targeting inflammation in multiple sclerosis (MS) have evolved rapidly for relapsing-remitting MS, whereas few therapies are available for progressive forms of MS, in particular secondary progressive MS (SPMS). The approval of siponimod for SPMS has allowed for optimism in the otherwise discouraging therapeutic landscape. METHODS: We conducted a retrospective, multicenter, non-interventional study analyzing the efficacy and safety of siponimod under real-world conditions in 227 SPMS patients. According to the retrospective study framework, data was acquired at prespecified time points. Clinical readouts were assessed every three months. Disease progression was determined as increase in expanded disability status scale (EDSS), radiological progression, or the occurrence of new relapses under treatment. For safety analyses, adverse events (AE) and reasons for discontinuation were documented. The collected data points were analyzed at baseline and after 6, 12 and 18 months. However, data were predominately collected at the 6- and 12-month time points as many patients were lost to follow-up. In a group consisting of 41 patients, a more detailed investigation regarding disease progression was conducted, including data from measurement of cognitive and motoric functions. RESULTS: Under siponimod therapy, 64.8% of patients experienced sustained clinical disease stability at 12 months. Out of the stable patients 21.4% of patients improved. Of the remaining patients, 31.5% experienced EDSS progression, 3.7% worsened without meeting the threshold for progression. Relapses occurred in 7.4%. Radiological disease activity was detected in 24.1% of patients after six months of treatment and in 29.6% of patients at 12 months follow-up. The in-depth cohort consisting of 41 patients demonstrated no substantial changes in cognitive abilities measured by Paced Auditory Serial Addition Test and Symbol Digit Modalities Test or motoric functions measured with Timed 25-Foot Walk, 100-m timed test, and 9-Hole Peg Test throughout the 12-month study period. Radiological assessment showed a stable volume of white and grey matter, as well as a stable lesion count at 12 months follow-up. AE were observed in nearly half of the included patients, with lymphopenia being the most common. Due to disease progression or AE, 31.2% of patients discontinued therapy. CONCLUSION: Treatment with siponimod had an overall stabilizing effect regarding clinical and radiological outcome measures. However, there is a need for more intensive treatment management and monitoring to identify disease progression and AE.

3.
Proc Math Phys Eng Sci ; 478(2262): 20210764, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35756875

ABSTRACT

Histories of large-scale horizontal and vertical lithosphere motion hold important information on mantle convection. Here, we compare continent-scale hiatus maps as a proxy for mantle flow induced dynamic topography and plate motion variations in the Atlantic and Indo-Australian realms since the Upper Jurassic, finding they frequently correlate, except when plate boundary forces may play a significant role. This correlation agrees with descriptions of asthenosphere flow beneath tectonic plates in terms of Poiseuille/Couette flow, as it explicitly relates plate motion changes, induced by evolving basal shear forces, to non-isostatic vertical motion of the lithosphere. Our analysis reveals a timescale, on the order of a geological series, between the occurrence of continent-scale hiatus and plate motion changes. This is consistent with the presence of a weak upper mantle. It also shows a spatial scale for interregional hiatus, on the order of 2000-3000 km in diameter, which can be linked by fluid dynamic analysis to active upper mantle flow regions. Our results suggest future studies should pursue large-scale horizontal and vertical lithosphere motion in combination, to track the expressions of past mantle flow. Such studies would provide powerful constraints for adjoint-based geodynamic inverse models of past mantle convection.

4.
Proc Math Phys Eng Sci ; 476(2242): 20200390, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33223939

ABSTRACT

Interregional geological maps hold important information for geodynamic models. Here, we use such maps to visualize major conformable and unconformable contacts at interregional scales and at the level of geologic series from the Upper Jurassic onward across North and South America, Europe, Africa and Australia. We extract hiatus information from these paleogeological maps, which we plot in a paleogeographical reference frame to link the maps to the plate and plume modes of mantle convection. We assume that interregional patterns of hiatus surfaces are proxy records of continent-scale mantle-induced vertical motion of the lithosphere. We find significant differences in the distribution of hiatus across and between continents at the timescale of geologic series, that is ten to a few tens of millions of years (Myrs). This is smaller than the mantle transit time, which, as the timescale of convection, is about 100-200 Myrs. Our results imply that different timescales for convection and topography in convective support must be an integral component of time-dependent geodynamic Earth models, consistent with the presence of a weaker upper mantle relative to the lower mantle. Additional geological constraints together with interregional geological maps at the resolution of stages (1-2 Myrs), are needed to assist in future geodynamic interpretations of interregional geologic hiatus.

5.
J Invest Dermatol ; 130(2): 481-91, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19657354

ABSTRACT

Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a downstream molecule of p38, involved in the production of TNF-alpha, a key cytokine, and an established drug target for many inflammatory diseases. We investigated the role of MK2 in skin inflammation to determine its drug target potential. MK2 deficiency significantly decreased plasma TNF-alpha levels after systemic endotoxin application. Deficient mice showed decreased skin edema formation in chronic 2-O-tetradecanoylphorbol-13-acetate (TPA)-induced irritative dermatitis and in subacute 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity. Surprisingly, MK2 deficiency did not inhibit edema formation in subacute 2,4-dinitrochlorobenzene (DNCB)-induced contact allergy and even increased TNF-alpha and IL-1beta levels as well as granulocyte infiltration in diseased ears. Ear inflammation in this model, however, was inhibited by TNF-alpha neutralization as it was in the subacute DNFB model. MK2 deficiency also did not show anti-inflammatory effects in acute DNFB-induced contact hypersensitivity, whereas the p38 inhibitor, SB203580, ameliorated skin inflammation supporting a pathophysiological role of p38. When evaluating possible mechanisms, we found that TNF-alpha production in MK2-deficient spleen cells was strongly diminished after TLR stimulation but less affected after T-cell receptor stimulation. Our data suggest that MK2, in contrast to its downstream effector molecule, TNF-alpha, has a rather elusive role in T-cell-dependent cutaneous inflammation.


Subject(s)
Inflammation , Intracellular Signaling Peptides and Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Skin/pathology , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Dermatitis, Contact , Dinitrofluorobenzene/chemistry , Female , Granulocytes/cytology , Homozygote , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell/metabolism , Skin/enzymology , Tetradecanoylphorbol Acetate/pharmacology , Tumor Necrosis Factor-alpha/metabolism
6.
J Neurosci ; 29(8): 2611-25, 2009 Feb 25.
Article in English | MEDLINE | ID: mdl-19244537

ABSTRACT

Participation of RAS, RAF, and mitogen-activated protein kinase (MAPK) in learning and memory has been demonstrated in a number of studies, but the molecular events requisite for cascade activation and regulation have not been explored. We demonstrate that the adapter protein DRK (downstream of receptor kinase) which is essential for signaling to RAS in developmental contexts, is preferentially distributed in the adult mushroom bodies, centers for olfactory learning and memory. We demonstrate that drk mutant heterozygotes exhibit deficits in olfactory learning and memory, apparent under limited training conditions, but are not impaired in sensory responses requisite for the association of the stimuli, or brain neuroanatomy. Furthermore, we demonstrate that the protein is required acutely within mushroom body neurons to mediate efficient learning, a process that requires RAF activation. Importantly, 90 min memory remained impaired, even after differential training yielding equivalent learning in animals with compromised DRK levels and controls and did not require RAF. Sustained MAPK activation is compromised in drk mutants and surprisingly is negatively regulated by constitutive RAF activity. The data establish a role for DRK in Drosophila behavioral neuroplasticity and suggest a dual role for the protein, first in RAF activation-dependent learning and additionally in RAF-inhibition dependent sustained MAPK activation essential for memory formation or stability.


Subject(s)
Association Learning/physiology , Drosophila Proteins/physiology , Memory, Short-Term/physiology , Olfactory Pathways/physiology , Smell/genetics , Analysis of Variance , Animals , Animals, Genetically Modified , Conditioning, Classical/physiology , Drosophila , Drosophila Proteins/genetics , Glue Proteins, Drosophila/genetics , Learning Disabilities/genetics , Memory Disorders/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Mushroom Bodies/cytology , Mushroom Bodies/metabolism , Mutation/physiology , Odorants , RNA, Small Interfering/genetics
7.
J Neurosci ; 24(18): 4460-8, 2004 May 05.
Article in English | MEDLINE | ID: mdl-15128860

ABSTRACT

Learning and memory formation in intact animals is generally studied under defined parameters, including the control of feeding. We used associative olfactory conditioning of the proboscis extension response in honeybees to address effects of feeding status on processes of learning and memory formation. Comparing groups of animals with different but defined feeding status at the time of conditioning reveals new and characteristic features in memory formation. In animals fed 18 hr earlier, three-trial conditioning induces a stable memory that consists of different phases: a mid-term memory (MTM), translation-dependent early long-term memory (eLTM; 1-2 d), and a transcription-dependent late LTM (lLTM; > or =3 d). Additional feeding of a small amount of sucrose 4 hr before conditioning leads to a loss of all of these memory phases. Interestingly, the basal activity of the cAMP-dependent protein kinase A (PKA), a key player in LTM formation, differs in animals with different satiation levels. Pharmacological rescue of the low basal PKA activity in animals fed 4 hr before conditioning points to a specific function of cAMP-PKA cascade in mediating satiation-dependent memory formation. An increase in PKA activity during conditioning rescues only transcription-dependent lLTM; acquisition, MTM, and eLTM are still impaired. Thus, during conditioning, the cAMP-PKA cascade mediates the induction of the transcription-dependent lLTM, depending on the satiation level. This result provides the first evidence for a central and distinct function of the cAMP-PKA cascade connecting satiation level with learning.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Learning/physiology , Memory/physiology , Satiation/physiology , Signal Transduction/physiology , Animals , Bees , Behavior, Animal/physiology , Conditioning, Psychological/physiology , Motivation , Smell/physiology , Stimulation, Chemical , Time
8.
Mol Cell Biol ; 23(21): 7732-41, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14560018

ABSTRACT

MK5 (mitogen-activated protein kinase [MAPK]-activated protein kinase 5), also designated PRAK (p38-regulated and -activated kinase), was deleted from mice by homologous recombination. Although no MK5 full-length protein and kinase activity was detected in the MK5 knockout mice, the animals were viable and fertile and did not display abnormalities in tissue morphology or behavior. In addition, these mice did not show increased resistance to endotoxic shock or decreased lipopolysaccharide-induced cytokine production. Hence, MK5 deletion resulted in a phenotype very different from the complex inflammation-impaired phenotype of mice deficient in MK2, although MK2 and MK5 exhibit evolutional, structural, and apparent extensive functional similarities. To explain this discrepancy, we used wild-type cells and embryonic fibroblasts from both MK2 and MK5 knockout mice as controls to reexamine the mechanism of activation, the interaction with endogenous p38 MAPK, and the substrate specificity of both enzymes. In contrast to MK2, which shows interaction with and chaperoning properties for p38 MAPK and which is activated by extracellular stresses such as arsenite or sorbitol treatment, endogenous MK5 did not show these properties. Furthermore, endogenous MK5 is not able to phosphorylate Hsp27 in vitro and in vivo. We conclude that the differences between the phenotypes of MK5- and MK2-deficient mice result from clearly different functional properties of both enzymes.


Subject(s)
Heat-Shock Proteins , Protein Kinases , Protein Serine-Threonine Kinases/metabolism , Recombination, Genetic , Animals , Cells, Cultured , Cytokines/immunology , Cytokines/metabolism , Intracellular Signaling Peptides and Proteins , Lipopolysaccharides/metabolism , Mice , Mice, Knockout , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Molecular Chaperones , Muscle, Skeletal/cytology , Muscle, Skeletal/metabolism , Myocardium/cytology , Myocardium/metabolism , Neoplasm Proteins/metabolism , Pancreas/cytology , Pancreas/metabolism , Phenotype , Protein Binding , Protein Serine-Threonine Kinases/genetics , p38 Mitogen-Activated Protein Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...