Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Elife ; 122024 Feb 13.
Article in English | MEDLINE | ID: mdl-38349818

ABSTRACT

Tripartite ATP-independent periplasmic (TRAP) transporters are secondary-active transporters that receive their substrates via a soluble-binding protein to move bioorganic acids across bacterial or archaeal cell membranes. Recent cryo-electron microscopy (cryo-EM) structures of TRAP transporters provide a broad framework to understand how they work, but the mechanistic details of transport are not yet defined. Here we report the cryo-EM structure of the Haemophilus influenzae N-acetylneuraminate TRAP transporter (HiSiaQM) at 2.99 Å resolution (extending to 2.2 Å at the core), revealing new features. The improved resolution (the previous HiSiaQM structure is 4.7 Å resolution) permits accurate assignment of two Na+ sites and the architecture of the substrate-binding site, consistent with mutagenic and functional data. Moreover, rather than a monomer, the HiSiaQM structure is a homodimer. We observe lipids at the dimer interface, as well as a lipid trapped within the fusion that links the SiaQ and SiaM subunits. We show that the affinity (KD) for the complex between the soluble HiSiaP protein and HiSiaQM is in the micromolar range and that a related SiaP can bind HiSiaQM. This work provides key data that enhances our understanding of the 'elevator-with-an-operator' mechanism of TRAP transporters.


Subject(s)
Haemophilus influenzae , N-Acetylneuraminic Acid , Haemophilus influenzae/metabolism , Cryoelectron Microscopy , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Membrane Transport Proteins/metabolism , Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism
2.
Nat Commun ; 14(1): 1120, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36849793

ABSTRACT

In bacteria and archaea, tripartite ATP-independent periplasmic (TRAP) transporters uptake essential nutrients. TRAP transporters receive their substrates via a secreted soluble substrate-binding protein. How a sodium ion-driven secondary active transporter is strictly coupled to a substrate-binding protein is poorly understood. Here we report the cryo-EM structure of the sialic acid TRAP transporter SiaQM from Photobacterium profundum at 2.97 Å resolution. SiaM comprises a "transport" domain and a "scaffold" domain, with the transport domain consisting of helical hairpins as seen in the sodium ion-coupled elevator transporter VcINDY. The SiaQ protein forms intimate contacts with SiaM to extend the size of the scaffold domain, suggesting that TRAP transporters may operate as monomers, rather than the typically observed oligomers for elevator-type transporters. We identify the Na+ and sialic acid binding sites in SiaM and demonstrate a strict dependence on the substrate-binding protein SiaP for uptake. We report the SiaP crystal structure that, together with docking studies, suggest the molecular basis for how sialic acid is delivered to the SiaQM transporter complex. We thus propose a model for substrate transport by TRAP proteins, which we describe herein as an 'elevator-with-an-operator' mechanism.


Subject(s)
Membrane Transport Proteins , N-Acetylneuraminic Acid , Biological Transport , Archaea , Adenosine Triphosphate
3.
ACS Chem Biol ; 17(7): 1890-1900, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35675124

ABSTRACT

Antibiotic resistance is a major worldwide concern, and new drugs with mechanistically novel modes of action are urgently needed. Here, we report the structure-based drug design, synthesis, and evaluation in vitro and in cellular systems of sialic acid derivatives able to inhibit the bacterial sialic acid symporter SiaT. We designed and synthesized 21 sialic acid derivatives and screened their affinity for SiaT by a thermal shift assay and elucidated the inhibitory mechanism through binding thermodynamics, computational methods, and inhibitory kinetic studies. The most potent compounds, which have a 180-fold higher affinity compared to the natural substrate, were tested in bacterial growth assays and indicate bacterial growth delay in methicillin-resistant Staphylococcus aureus. This study represents the first example and a promising lead in developing sialic acid uptake inhibitors as novel antibacterial agents.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/chemistry , Kinetics , Microbial Sensitivity Tests , N-Acetylneuraminic Acid/pharmacology
4.
J Biol Chem ; 297(4): 101113, 2021 10.
Article in English | MEDLINE | ID: mdl-34437902

ABSTRACT

There are five known general catalytic mechanisms used by enzymes to catalyze carbohydrate epimerization. The amino sugar epimerase N-acetylmannosamine-6-phosphate 2-epimerase (NanE) has been proposed to use a deprotonation-reprotonation mechanism, with an essential catalytic lysine required for both steps. However, the structural determinants of this mechanism are not clearly established. We characterized NanE from Staphylococcus aureus using a new coupled assay to monitor NanE catalysis in real time and found that it has kinetic constants comparable with other species. The crystal structure of NanE from Staphylococcus aureus, which comprises a triosephosphate isomerase barrel fold with an unusual dimeric architecture, was solved with both natural and modified substrates. Using these substrate-bound structures, we identified the following active-site residues lining the cleft at the C-terminal end of the ß-strands: Gln11, Arg40, Lys63, Asp124, Glu180, and Arg208, which were individually substituted and assessed in relation to the mechanism. From this, we re-evaluated the central role of Glu180 in this mechanism alongside the catalytic lysine. We observed that the substrate is bound in a conformation that ideally positions the C5 hydroxyl group to be activated by Glu180 and donate a proton to the C2 carbon. Taken together, we propose that NanE uses a novel substrate-assisted proton displacement mechanism to invert the C2 stereocenter of N-acetylmannosamine-6-phosphate. Our data and mechanistic interpretation may be useful in the development of inhibitors of this enzyme or in enzyme engineering to produce biocatalysts capable of changing the stereochemistry of molecules that are not amenable to synthetic methods.


Subject(s)
Bacterial Proteins/chemistry , Carbohydrate Epimerases/chemistry , Hexosamines/chemistry , Staphylococcus aureus/enzymology , Sugar Phosphates/chemistry , Amino Acid Substitution , Bacterial Proteins/genetics , Carbohydrate Epimerases/genetics , Catalysis , Hexosamines/genetics , Hexosamines/metabolism , Mutation, Missense , Protein Conformation, beta-Strand , Protein Domains , Staphylococcus aureus/genetics , Sugar Phosphates/genetics , Sugar Phosphates/metabolism
5.
Nat Commun ; 12(1): 1988, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33790291

ABSTRACT

Bacteria respond to environmental changes by inducing transcription of some genes and repressing others. Sialic acids, which coat human cell surfaces, are a nutrient source for pathogenic and commensal bacteria. The Escherichia coli GntR-type transcriptional repressor, NanR, regulates sialic acid metabolism, but the mechanism is unclear. Here, we demonstrate that three NanR dimers bind a (GGTATA)3-repeat operator cooperatively and with high affinity. Single-particle cryo-electron microscopy structures reveal the DNA-binding domain is reorganized to engage DNA, while three dimers assemble in close proximity across the (GGTATA)3-repeat operator. Such an interaction allows cooperative protein-protein interactions between NanR dimers via their N-terminal extensions. The effector, N-acetylneuraminate, binds NanR and attenuates the NanR-DNA interaction. The crystal structure of NanR in complex with N-acetylneuraminate reveals a domain rearrangement upon N-acetylneuraminate binding to lock NanR in a conformation that weakens DNA binding. Our data provide a molecular basis for the regulation of bacterial sialic acid metabolism.


Subject(s)
DNA-Binding Proteins/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/metabolism , Repressor Proteins/metabolism , Sialic Acids/metabolism , Allosteric Regulation , Base Sequence , Binding Sites/genetics , Crystallography, X-Ray , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Escherichia coli/genetics , Escherichia coli Proteins/chemistry , Escherichia coli Proteins/genetics , Gene Expression Regulation, Bacterial , Models, Molecular , N-Acetylneuraminic Acid/metabolism , Nucleotide Motifs/genetics , Protein Binding , Protein Conformation , Protein Multimerization , Repressor Proteins/genetics
6.
J Biol Chem ; 295(10): 3301-3315, 2020 03 06.
Article in English | MEDLINE | ID: mdl-31949045

ABSTRACT

In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.


Subject(s)
Bacterial Proteins/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Staphylococcus aureus/enzymology , Amino Acid Motifs , Bacterial Proteins/chemistry , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Hexosamines/chemistry , Hexosamines/metabolism , Kinetics , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Protein Stability , Protein Structure, Tertiary , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Substrate Specificity , Zinc/chemistry , Zinc/metabolism
7.
ACS Med Chem Lett ; 10(4): 437-443, 2019 Apr 11.
Article in English | MEDLINE | ID: mdl-30996776

ABSTRACT

Aldo-keto reductase 1C3 (AKR1C3) is an attractive target in drug design for its role in resistance to anticancer therapy. Several nonsteroidal anti-inflammatory drugs such as indomethacin are known to inhibit AKR1C3 in a nonselective manner because of COX-off target effects. Here we designed two indomethacin analogues by proposing a bioisosteric connection between the indomethacin carboxylic acid function and either hydroxyfurazan or hydroxy triazole rings. Both compounds were found to target AKR1C3 in a selective manner. In particular, hydroxyfurazan derivative is highly selective for AKR1C3 over the 1C2 isoform (up to 90-times more) and inactive on COX enzymes. High-resolution crystal structure of its complex with AKR1C3 shed light onto the binding mode of the new inhibitors. In cell-based assays (on colorectal and prostate cancer cells), the two indomethacin analogues showed higher potency than indomethacin. Therefore, these two AKR1C3 inhibitors can be used to provide further insight into the role of AKR1C3 in cancer.

10.
FEBS Lett ; 593(1): 52-66, 2019 01.
Article in English | MEDLINE | ID: mdl-30411345

ABSTRACT

N-Acetylglucosamine-6-phosphate deacetylase (NagA) and glucosamine-6-phosphate deaminase (NagB) are branch point enzymes that direct amino sugars into different pathways. For Staphylococcus aureus NagA, analytical ultracentrifugation and small-angle X-ray scattering data demonstrate that it is an asymmetric dimer in solution. Initial rate experiments show hysteresis, which may be related to pathway regulation, and kinetic parameters similar to other bacterial isozymes. The enzyme binds two Zn2+ ions and is not substrate inhibited, unlike the Escherichia coli isozyme. S. aureus NagB adopts a novel dimeric structure in solution and shows kinetic parameters comparable to other Gram-positive isozymes. In summary, these functional data and solution structures are of use for understanding amino sugar metabolism in S. aureus, and will inform the design of inhibitory molecules.


Subject(s)
Aldose-Ketose Isomerases/chemistry , Aldose-Ketose Isomerases/metabolism , Staphylococcus aureus/enzymology , alpha-N-Acetylgalactosaminidase/chemistry , alpha-N-Acetylgalactosaminidase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Kinetics , Models, Molecular , Protein Multimerization , Scattering, Small Angle , Staphylococcus aureus/chemistry , Ultracentrifugation , X-Ray Diffraction , Zinc/metabolism
11.
Eur J Med Chem ; 163: 266-280, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30529545

ABSTRACT

Plasmodium falciparum dihydroorotate dehydrogenase (PfDHODH) has been clinically validated as a target for antimalarial drug discovery, as a triazolopyrimidine class inhibitor (DSM265) is currently undergoing clinical development. Here, we have identified new hydroxyazole scaffold-based PfDHODH inhibitors belonging to two different chemical series. The first series was designed by a scaffold hopping strategy that exploits the use of hydroxylated azoles. Within this series, the hydroxythiadiazole 3 was identified as the best selective PfDHODH inhibitor (IC50 12.0 µM). The second series was designed by modulating four different positions of the hydroxypyrazole scaffold. In particular, hydroxypyrazoles 7e and 7f were shown to be active in the low µM range (IC50 2.8 and 5.3 µM, respectively). All three compounds, 3, 7e and 7f showed clear selectivity over human DHODH (IC50 > 200 µM), low cytotoxicity, and retained micromolar activity in P. falciparum-infected erythrocytes. The crystallographic structures of PfDHODH in complex with compounds 3 and 7e proved their binding mode, supplying essential data for future optimization of these scaffolds.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/pharmacology , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Plasmodium falciparum/enzymology , Antimalarials/pharmacology , Azoles/chemistry , Azoles/pharmacology , Binding Sites , Crystallography, X-Ray , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/metabolism , Erythrocytes/parasitology , Humans , Oxidoreductases Acting on CH-CH Group Donors/metabolism , Protein Binding , Pyrazoles/chemistry , Pyrazoles/pharmacology , Structure-Activity Relationship
12.
Nat Commun ; 9(1): 5245, 2018 12 07.
Article in English | MEDLINE | ID: mdl-30532032

ABSTRACT

Sodium-dependent glucose transporters (SGLTs) exploit sodium gradients to transport sugars across the plasma membrane. Due to their role in renal sugar reabsorption, SGLTs are targets for the treatment of type 2 diabetes. Current therapeutics are phlorizin derivatives that contain a sugar moiety bound to an aromatic aglycon tail. Here, we develop structural models of human SGLT1/2 in complex with inhibitors by combining computational and functional studies. Inhibitors bind with the sugar moiety in the sugar pocket and the aglycon tail in the extracellular vestibule. The binding poses corroborate mutagenesis studies and suggest a partial closure of the outer gate upon binding. The models also reveal a putative Na+ binding site in hSGLT1 whose disruption reduces the transport stoichiometry to the value observed in hSGLT2 and increases inhibition by aglycon tails. Our work demonstrates that subtype selectivity arises from Na+-regulated outer gate closure and a variable region in extracellular loop EL5.


Subject(s)
Glucose/metabolism , Sodium-Glucose Transporter 2 Inhibitors/metabolism , Sodium/metabolism , Symporters/metabolism , Allosteric Regulation , Animals , Binding Sites , Female , Humans , Oocytes/drug effects , Oocytes/metabolism , Oocytes/physiology , Phlorhizin/metabolism , Phlorhizin/pharmacology , Protein Binding , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 1/metabolism , Sodium-Glucose Transporter 2/genetics , Sodium-Glucose Transporter 2/metabolism , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Symporters/antagonists & inhibitors , Symporters/genetics , Xenopus laevis
13.
Front Chem ; 6: 233, 2018.
Article in English | MEDLINE | ID: mdl-30023356

ABSTRACT

Mammalian cell surfaces are decorated with complex glycoconjugates that terminate with negatively charged sialic acids. Commensal and pathogenic bacteria can use host-derived sialic acids for a competitive advantage, but require a functional sialic acid transporter to import the sugar into the cell. This work investigates the sodium sialic acid symporter (SiaT) from Staphylococcus aureus (SaSiaT). We demonstrate that SaSiaT rescues an Escherichia coli strain lacking its endogenous sialic acid transporter when grown on the sialic acids N-acetylneuraminic acid (Neu5Ac) or N-glycolylneuraminic acid (Neu5Gc). We then develop an expression, purification and detergent solubilization system for SaSiaT and demonstrate that the protein is largely monodisperse in solution with a stable monomeric oligomeric state. Binding studies reveal that SaSiaT has a higher affinity for Neu5Gc over Neu5Ac, which was unexpected and is not seen in another SiaT homolog. We develop a homology model and use comparative sequence analyses to identify substitutions in the substrate-binding site of SaSiaT that may explain the altered specificity. SaSiaT is shown to be electrogenic, and transport is dependent upon more than one Na+ ion for every sialic acid molecule. A functional sialic acid transporter is essential for the uptake and utilization of sialic acid in a range of pathogenic bacteria, and developing new inhibitors that target these transporters is a valid mechanism for inhibiting bacterial growth. By demonstrating a route to functional recombinant SaSiaT, and developing the in vivo and in vitro assay systems, our work underpins the design of inhibitors to this transporter.

14.
J Med Chem ; 61(14): 6034-6055, 2018 Jul 26.
Article in English | MEDLINE | ID: mdl-29939742

ABSTRACT

Human dihydroorotate dehydrogenase ( hDHODH) catalyzes the rate-limiting step in de novo pyrimidine biosynthesis, the conversion of dihydroorotate to orotate. hDHODH has recently been found to be associated with acute myelogenous leukemia, a disease for which the standard of intensive care has not changed over decades. This work presents a novel class of hDHODH inhibitors, which are based on an unusual carboxylic group bioisostere 2-hydroxypyrazolo[1,5- a]pyridine, that has been designed starting from brequinar, one of the most potent hDHODH inhibitors. A combination of structure-based and ligand-based strategies produced compound 4, which shows brequinar-like hDHODH potency in vitro and is superior in terms of cytotoxicity and immunosuppression. Compound 4 also restores myeloid differentiation in leukemia cell lines at concentrations that are one log digit lower than those achieved in experiments with brequinar. This Article reports the design, synthesis, SAR, X-ray crystallography, biological assays, and physicochemical characterization of the new class of hDHODH inhibitors.


Subject(s)
Cell Differentiation/drug effects , Drug Design , Myeloid Cells/cytology , Myeloid Cells/drug effects , Oxidoreductases Acting on CH-CH Group Donors/antagonists & inhibitors , Pyrazoles/chemistry , Pyrazoles/pharmacology , Binding Sites , Dihydroorotate Dehydrogenase , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Jurkat Cells , Models, Molecular , Oxidoreductases Acting on CH-CH Group Donors/chemistry , Protein Conformation , Structure-Activity Relationship
15.
Nat Commun ; 9(1): 1753, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29717135

ABSTRACT

Many pathogenic bacteria utilise sialic acids as an energy source or use them as an external coating to evade immune detection. As such, bacteria that colonise sialylated environments deploy specific transporters to mediate import of scavenged sialic acids. Here, we report a substrate-bound 1.95 Å resolution structure and subsequent characterisation of SiaT, a sialic acid transporter from Proteus mirabilis. SiaT is a secondary active transporter of the sodium solute symporter (SSS) family, which use Na+ gradients to drive the uptake of extracellular substrates. SiaT adopts the LeuT-fold and is in an outward-open conformation in complex with the sialic acid N-acetylneuraminic acid and two Na+ ions. One Na+ binds to the conserved Na2 site, while the second Na+ binds to a new position, termed Na3, which is conserved in many SSS family members. Functional and molecular dynamics studies validate the substrate-binding site and demonstrate that both Na+ sites regulate N-acetylneuraminic acid transport.


Subject(s)
Organic Anion Transporters/metabolism , Sodium/metabolism , Symporters/metabolism , Amino Acid Sequence , N-Acetylneuraminic Acid/metabolism , Organic Anion Transporters/chemistry , Protein Folding , Sequence Homology, Amino Acid , Substrate Specificity , Symporters/chemistry
16.
Eur J Med Chem ; 150: 930-945, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29602039

ABSTRACT

The aldo-keto reductase 1C3 (AKR1C3) isoform plays a vital role in the biosynthesis of androgens and is considered an attractive target in prostate cancer (PCa). No AKR1C3-targeted agent has to date been approved for clinical use. Flufenamic acid and indomethacine are non-steroidal anti-inflammatory drugs known to inhibit AKR1C3 in a non-selective manner as COX off-target effects are also observed. Recently, we employed a scaffold hopping approach to design a new class of potent and selective AKR1C3 inhibitors based on a N-substituted hydroxylated triazole pharmacophore. Following a similar strategy, we designed a new series focused around an acidic hydroxybenzoisoxazole moiety, which was rationalised to mimic the benzoic acid role in the flufenamic scaffold. Through iterative rounds of drug design, synthesis and biological evaluation, several compounds were discovered to target AKR1C3 in a selective manner. The most promising compound of series (6) was found to be highly selective (up to 450-fold) for AKR1C3 over the 1C2 isoform with minimal COX1 and COX2 off-target effects. Other inhibitors were obtained modulating the best example of hydroxylated triazoles we previously presented. In cell-based assays, the most promising compounds of both series reduced the cell proliferation, prostate specific antigen (PSA) and testosterone production in AKR1C3-expressing 22RV1 prostate cancer cells and showed synergistic effect when assayed in combination with abiraterone and enzalutamide. Structure determination of AKR1C3 co-crystallized with one representative compound from each of the two series clearly identified both compounds in the androstenedione binding site, hence supporting the biochemical data.


Subject(s)
Aldo-Keto Reductase Family 1 Member C3/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Benzoxazoles/pharmacology , Enzyme Inhibitors/pharmacology , Flufenamic Acid/pharmacology , Aldo-Keto Reductase Family 1 Member C3/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzoxazoles/chemical synthesis , Benzoxazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Flufenamic Acid/chemical synthesis , Flufenamic Acid/chemistry , Humans , Molecular Structure , Prostate-Specific Antigen/antagonists & inhibitors , Prostate-Specific Antigen/metabolism , Structure-Activity Relationship , Testosterone/antagonists & inhibitors , Testosterone/biosynthesis
17.
Microb Biotechnol ; 11(2): 420-428, 2018 03.
Article in English | MEDLINE | ID: mdl-29345069

ABSTRACT

The process of obtaining a well-expressing, soluble and correctly folded constructs can be made easier and quicker by automating the optimization of cloning, expression and purification. While there are many semiautomated pipelines available for cloning, expression and purification, there is hardly any pipeline that involves complete automation. Here, we achieve complete automation of all the steps involved in cloning and in vivo expression screening. This is demonstrated using 18 genes involved in sialic acid catabolism and the surface sialylation pathway. Our main objective was to clone these genes into a His-tagged Gateway vector, followed by their small-scale expression optimization in vivo. The constructs that showed best soluble expression were then selected for purification studies and scaled up for crystallization studies. Our technique allowed us to quickly find conditions for producing significant quantities of soluble proteins in Escherichia coli, their large-scale purification and successful crystallization of a number of these proteins. The method can be implemented in other cases where one needs to screen a large number of constructs, clones and expression vectors for successful recombinant production of functional proteins.


Subject(s)
Automation, Laboratory/methods , Cloning, Molecular/methods , Enzymes/isolation & purification , Escherichia coli/metabolism , Gene Expression , Metabolic Networks and Pathways/genetics , N-Acetylneuraminic Acid/metabolism , Enzymes/genetics , Enzymes/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Genetic Testing/methods , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
18.
Biophys Rev ; 10(2): 219-227, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29222808

ABSTRACT

Eukaryotic cell surfaces are decorated with a complex array of glycoconjugates that are usually capped with sialic acids, a large family of over 50 structurally distinct nine-carbon amino sugars, the most common member of which is N-acetylneuraminic acid. Once made available through the action of neuraminidases, bacterial pathogens and commensals utilise host-derived sialic acid by degrading it for energy or repurposing the sialic acid onto their own cell surface to camouflage the bacterium from the immune system. A functional sialic acid transporter has been shown to be essential for the uptake of sialic acid in a range of human bacterial pathogens and important for host colonisation and persistence. Here, we review the state-of-play in the field with respect to the molecular mechanisms by which these bio-nanomachines transport sialic acids across bacterial cell membranes.

19.
Elife ; 62017 08 25.
Article in English | MEDLINE | ID: mdl-28841133

ABSTRACT

Transcription is regulated through binding factors to gene promoters to activate or repress expression, however, the mechanisms by which factors find targets remain unclear. Using single-molecule fluorescence microscopy, we determined in vivo stoichiometry and spatiotemporal dynamics of a GFP tagged repressor, Mig1, from a paradigm signaling pathway of Saccharomyces cerevisiae. We find the repressor operates in clusters, which upon extracellular signal detection, translocate from the cytoplasm, bind to nuclear targets and turnover. Simulations of Mig1 configuration within a 3D yeast genome model combined with a promoter-specific, fluorescent translation reporter confirmed clusters are the functional unit of gene regulation. In vitro and structural analysis on reconstituted Mig1 suggests that clusters are stabilized by depletion forces between intrinsically disordered sequences. We observed similar clusters of a co-regulatory activator from a different pathway, supporting a generalized cluster model for transcription factors that reduces promoter search times through intersegment transfer while stabilizing gene expression.


Subject(s)
Gene Expression Regulation, Fungal , Repressor Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription, Genetic , Genes, Reporter , Green Fluorescent Proteins/analysis , Green Fluorescent Proteins/genetics , Models, Biological , Protein Binding , Protein Transport , Recombinant Fusion Proteins/analysis , Recombinant Fusion Proteins/genetics , Repressor Proteins/genetics , Saccharomyces cerevisiae Proteins/genetics , Single Molecule Imaging , Spatio-Temporal Analysis , Staining and Labeling
20.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 6): 356-362, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28580924

ABSTRACT

Sialic acids comprise a varied group of nine-carbon amino sugars that are widely distributed among mammals and higher metazoans. Some human commensals and bacterial pathogens can scavenge sialic acids from their environment and degrade them for use as a carbon and nitrogen source. The enzyme N-acetylmannosamine kinase (NanK; EC 2.7.1.60) belongs to the transcriptional repressors, uncharacterized open reading frames and sugar kinases (ROK) superfamily. NanK catalyzes the second step of the sialic acid catabolic pathway, transferring a phosphate group from adenosine 5'-triphosphate to the C6 position of N-acetylmannosamine to generate N-acetylmannosamine 6-phosphate. The structure of NanK from Fusobacterium nucleatum was determined to 2.23 Šresolution by X-ray crystallography. Unlike other NanK enzymes and ROK family members, F. nucleatum NanK does not have a conserved zinc-binding site. In spite of the absence of the zinc-binding site, all of the major structural features of enzymatic activity are conserved.


Subject(s)
Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , Fusobacterium nucleatum/chemistry , Hexosamines/chemistry , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Adenosine Triphosphate/metabolism , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Fusobacterium nucleatum/enzymology , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hexosamines/metabolism , Models, Molecular , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...