Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Res ; 73(20): 6289-98, 2013 Oct 15.
Article in English | MEDLINE | ID: mdl-23980093

ABSTRACT

Radiotherapy is one of the mainstays of anticancer treatment, but the relationship between the radiosensitivity of cancer cells and their genomic characteristics is still not well defined. Here, we report the development of a high-throughput platform for measuring radiation survival in vitro and its validation in comparison with conventional clonogenic radiation survival analysis. We combined results from this high-throughput assay with genomic parameters in cell lines from squamous cell lung carcinoma, which is standardly treated by radiotherapy, to identify parameters that predict radiation sensitivity. We showed that activation of NFE2L2, a frequent event in lung squamous cancers, confers radiation resistance. An expression-based, in silico screen nominated inhibitors of phosphoinositide 3-kinase (PI3K) as NFE2L2 antagonists. We showed that the selective PI3K inhibitor, NVP-BKM120, both decreased NRF2 protein levels and sensitized NFE2L2 or KEAP1-mutant cells to radiation. We then combined results from this high-throughput assay with single-sample gene set enrichment analysis of gene expression data. The resulting analysis identified pathways implicated in cell survival, genotoxic stress, detoxification, and innate and adaptive immunity as key correlates of radiation sensitivity. The integrative and high-throughput methods shown here for large-scale profiling of radiation survival and genomic features of solid-tumor-derived cell lines should facilitate tumor radiogenomics and the discovery of genotype-selective radiation sensitizers and protective agents.


Subject(s)
Carcinoma, Squamous Cell/radiotherapy , High-Throughput Screening Assays/methods , Lung Neoplasms/radiotherapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Cell Growth Processes/genetics , Cell Growth Processes/radiation effects , Cell Line, Tumor , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , NF-E2-Related Factor 2/antagonists & inhibitors , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Phosphoinositide-3 Kinase Inhibitors , Radiation Tolerance/genetics
2.
Genes Dev ; 27(2): 197-210, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-23322301

ABSTRACT

The NKX2-1 transcription factor, a regulator of normal lung development, is the most significantly amplified gene in human lung adenocarcinoma. To study the transcriptional impact of NKX2-1 amplification, we generated an expression signature associated with NKX2-1 amplification in human lung adenocarcinoma and analyzed DNA-binding sites of NKX2-1 by genome-wide chromatin immunoprecipitation. Integration of these expression and cistromic analyses identified LMO3, itself encoding a transcription regulator, as a candidate direct transcriptional target of NKX2-1. Further cistromic and overexpression analyses indicated that NKX2-1 can cooperate with the forkhead box transcription factor FOXA1 to regulate LMO3 gene expression. RNAi analysis of NKX2-1-amplified cells compared with nonamplified cells demonstrated that LMO3 mediates cell survival downstream from NKX2-1. Our findings provide new insight into the transcriptional regulatory network of NKX2-1 and suggest that LMO3 is a transcriptional signal transducer in NKX2-1-amplified lung adenocarcinomas.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adenocarcinoma/physiopathology , Gene Expression Regulation, Neoplastic , LIM Domain Proteins/metabolism , Lung Neoplasms/physiopathology , Nuclear Proteins/genetics , Transcription Factors/genetics , Adenocarcinoma of Lung , Cell Line, Tumor , Chromatin/metabolism , Gene Expression Profiling , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , Nuclear Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Thyroid Nuclear Factor 1 , Transcription Factors/metabolism
3.
Cancer Discov ; 1(1): 35-43, 2011 Jun.
Article in English | MEDLINE | ID: mdl-22140652

ABSTRACT

UNLABELLED: Using an integrative genomics approach called amplification breakpoint ranking and assembly analysis, we nominated KRAS as a gene fusion with the ubiquitin-conjugating enzyme UBE2L3 in the DU145 cell line, originally derived from prostate cancer metastasis to the brain. Interestingly, analysis of tissues revealed that 2 of 62 metastatic prostate cancers harbored aberrations at the KRAS locus. In DU145 cells, UBE2L3-KRAS produces a fusion protein, a specific knockdown of which attenuates cell invasion and xenograft growth. Ectopic expression of the UBE2L3-KRAS fusion protein exhibits transforming activity in NIH 3T3 fibroblasts and RWPE prostate epithelial cells in vitro and in vivo. In NIH 3T3 cells, UBE2L3-KRAS attenuates MEK/ERK signaling, commonly engaged by oncogenic mutant KRAS, and instead signals via AKT and p38 mitogen-activated protein kinase (MAPK) pathways. This is the first report of a gene fusion involving the Ras family, suggesting that this aberration may drive metastatic progression in a rare subset of prostate cancers. SIGNIFICANCE: This is the first description of an oncogenic gene fusion of KRAS, one of the most studied proto-oncogenes. KRAS rearrangement may represent the driving mutation in a rare subset of metastatic prostate cancers, emphasizing the importance of RAS-RAF-MAPK signaling in this disease.


Subject(s)
Gene Rearrangement , Prostatic Neoplasms/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins/genetics , ras Proteins/genetics , Animals , Cell Line, Tumor , Extracellular Signal-Regulated MAP Kinases/genetics , Gene Fusion , HEK293 Cells , Humans , MAP Kinase Kinase Kinases/genetics , Male , Mice , Mutation , NIH 3T3 Cells , Proto-Oncogene Proteins c-akt/genetics , Ubiquitin-Conjugating Enzymes/genetics , p38 Mitogen-Activated Protein Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...