Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Appl Physiol Nutr Metab ; 47(7): 711-724, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35259026

ABSTRACT

To mitigate excessive rises in core temperature (>1 °C) in non-heat acclimatized workers, the American Conference of Governmental Industrial Hygienists (ACGIH) provides heat stress limits (Action Limit Values; ALV), defined by the wet-bulb globe temperature (WBGT) and a worker's metabolic rate. However, since these limits are based on data from men, their suitability for women remains unclear. We therefore assessed core temperature and heart rate in men (n = 19; body surface area-to-mass ratio: 250 (SD 17) cm2/kg) and women (n = 15; body surface area-to-mass ratio: 268 (SD 24) cm2/kg) aged 18-45 years during 180 min of walking at a moderate metabolic rate (200 W/m2) in WBGTs below (16 and 24 °C) and above (28 and 32 °C) ACGIH ALV. Sex did not significantly influence (i) rises in core temperature, irrespective of WBGT, (ii) the proportion of participants with rises in core temperature >1 °C in environments below ACGIH limits, and (iii) work duration before rises in core temperature exceeded 1 °C or volitional termination in environments above ACGIH limits. Although further studies are needed, these findings indicate that for the purpose of mitigating rises in core temperature exceeding recommended limits (>1 °C), ACGIH guidelines have comparable effectiveness in non-heat acclimatized men and women during moderate-intensity work. Novelty: Sex did not appreciably influence thermal strain nor the proportion of participants with core temperatures exceeding recommended limits. Sex did not significantly influence tolerance to uncompensable heat stress. Despite originating from data obtained in only men, current occupational heat stress guidance offered comparable effectiveness in men and women.


Subject(s)
Heat Stress Disorders , Occupational Exposure , Thermotolerance , Body Temperature/physiology , Female , Heat Stress Disorders/prevention & control , Hot Temperature , Humans , Male , Occupational Exposure/adverse effects , Occupational Exposure/analysis
2.
Med Sci Sports Exerc ; 53(10): 2196-2206, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33988544

ABSTRACT

PURPOSE: To mitigate rises in core temperature >1°C, the American Conference of Governmental Industrial Hygienists (ACGIH) recommends upper limits for heat stress (action limit values [ALV]), defined by wet-bulb globe temperature (WBGT) and a worker's metabolic rate. However, these limits are based on data from young men and are assumed to be suitable for all workers, irrespective of age or health status. We therefore explored the effect of aging, type 2 diabetes (T2D), and hypertension (HTN) on tolerance to prolonged, moderate-intensity work above and below these limits. METHODS: Core temperature and heart rate were assessed in healthy, heat unacclimatized young (18-30 yr, n = 13) and older (50-70 yr) men (n = 14) and heat unacclimatized older men with T2D (n = 10) or HTN (n = 13) during moderate-intensity (metabolic rate: 200 W·m-2) walking for 180 min (or until termination) in environments above (28°C and 32°C WBGT) and below (16°C and 24°C WBGT) the ALV for continuous work at this intensity (25°C WBGT). RESULTS: Work tolerance in the 32°C WBGT was shorter in men with T2D (median [IQR]; 109 [91-173] min; P = 0.041) and HTN (120 [65-170] min; P = 0.010) compared with healthy older men (180 [133-180] min). However, aging, T2D, and HTN did not significantly influence (i) core temperature or heart rate reserve, irrespective of WBGT; (ii) the probability that core temperature exceeded recommended limits (>1°C) under the ALV; and (iii) work duration before core temperature exceeded recommended limits (>1°C) above the ALV. CONCLUSION: These findings demonstrate that T2D and HTN attenuate tolerance to uncompensable heat stress (32°C WBGT); however, these chronic diseases do not significantly impact thermal and cardiovascular strain, or the validity of ACIGH recommendations during moderate-intensity work.


Subject(s)
Aging/physiology , Diabetes Mellitus, Type 2/physiopathology , Hypertension/physiopathology , Occupational Exposure , Thermotolerance , Adolescent , Adult , Aged , Body Temperature , Guidelines as Topic , Heart Rate , Heat-Shock Response/physiology , Humans , Male , Middle Aged , Skin Temperature , Young Adult
4.
J Hum Hypertens ; 35(10): 880-883, 2021 10.
Article in English | MEDLINE | ID: mdl-33057176

ABSTRACT

Exercise is promoted for management of hypertension and as a general healthy behavior, but environmental conditions are seldom considered in these recommendations. Hypertension may affect skin blood flow and sweating, two of the primary mechanisms which prevent continued elevations in core temperature by facilitating whole-body heat loss during exercise-heat stress. We show that during incremental exercise-heat stress (in hot-dry conditions), controlled and uncomplicated hypertension is unlikely to exert a meaningful effect on whole-body heat loss in individuals who are already physically active.


Subject(s)
Hot Temperature , Hypertension , Body Temperature Regulation , Heat-Shock Response , Humans , Sweating
5.
Temperature (Austin) ; 7(3): 263-269, 2020.
Article in English | MEDLINE | ID: mdl-33123619

ABSTRACT

Aging exacerbates hyperthermia and cardiovascular strain during passive heat exposure, but it remains unclear whether those effects worsen in older adults with type 2 diabetes (T2D). We examined these responses in unacclimatized, physically active, older individuals with (n = 13, mean ± SD age: 60 ± 8 years, HbA1c: 7.0 ± 1.0%) and without (Control, n = 30, 62 ± 6 years) well-controlled T2D during a brief, 3-h passive exposure to extreme heat (44°C, 30% relative humidity). Metabolic heat production, dry heat gain, total heat gain (metabolic heat production + dry heat gain), evaporative heat loss, body heat storage (summation of heat gain/loss), rectal and mean skin temperatures as well as heart rate were measured continuously. No between-group differences were observed for metabolic heat production (T2D vs. Control; 53 ± 5 vs. 55 ± 7 W/m2), dry heat gain (48 ± 9 vs. 47 ± 11 W/m2), total heat gain (101 ± 10 vs. 102 ± 14 W/m2) and evaporative heat loss (83 ± 10 vs. 85 ± 12 W/m2) over the 3 h (all P > 0.05). Consequently, the changes in body heat storage (380 ± 93 vs. 358 ± 172 kJ, P = 0.67) were similar between groups. Moreover, no between-group differences in rectal and mean skin temperatures or heart rate were measured. We conclude that unacclimatized, physically active, older adults with well-controlled T2D do not experience greater hyperthermia and cardiovascular strain compared to their healthy counterparts while resting in extreme heat for a brief, 3-h period.

6.
Exp Physiol ; 104(6): 845-854, 2019 06.
Article in English | MEDLINE | ID: mdl-30932277

ABSTRACT

NEW FINDINGS: What is the central question of this study? Does a delay in cold water immersion treatment affect the cardiac autonomic control of exertionally heat-strained individuals? What is the main finding and its importance? Cold water immersion is effective for treating exertionally heat-strained individuals even when treatment is commenced with a significant delay. However, that treatment delay leads to only partial/transient restoration of cardiac autonomic control. Therefore, we recommend that exertional heatstroke patients are continuously monitored for several hours even after core temperature has returned to normal values. ABSTRACT: Immediate cold water immersion (CWI) is the gold-standard treatment for exertional heatstroke. In the field, however, treatment is often delayed, primarily owing to a delayed paramedic response and/or inaccurate diagnosis. We examined the effect of treatment (reduction of rectal temperature to 37.5°C) delays of 5 (short), 20 (moderate) and 40 (prolonged) min on cardiac autonomic control [as assessed via heart rate variability (HRV)] in eight exertionally heat-strained (40.0°C rectal temperature) individuals. Eleven HRV indices were computed that have been described commonly in the literature and characterize almost all known domains of the variability and complexity of the cardiopulmonary system. We found that the cardiac autonomic control (as assessed via HRV) of exertionally heat-strained individuals was significantly affected by the amount of time it took for the CWI treatment to be applied. Six out of 11 HRV indices studied, from all variability domains, displayed strong (P ≤ 0.005) time × delay interaction effects. Moreover, the number of significantly (P ≤ 0.005) abnormal (i.e. different from the short delay) HRV indices more than doubled (seven versus 15) from the moderate delay to the prolonged delay. Finally, our results demonstrated that a CWI treatment applied with delays of 20 and, primarily, 40 min did not lead to a full restoration of cardiac autonomic control of exertionally heat-strained individuals. In conclusion, this study supports CWI for treating exertionally heat-strained individuals even when applied with prolonged delay, but it highlights the importance of continued cardiac monitoring of patients who have suffered exertional heatstroke for several hours after restoration of core temperature to normal.


Subject(s)
Body Temperature/physiology , Heart Rate/physiology , Heat Stroke/physiopathology , Adult , Heat Stroke/therapy , Humans , Immersion , Male , Oxygen Consumption/physiology , Time-to-Treatment , Young Adult
7.
J Appl Physiol (1985) ; 126(6): 1598-1606, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30896355

ABSTRACT

Daily compensable cold exposure in humans reduces shivering by ~20% without changing total heat production, partly by increasing brown adipose tissue thermogenic capacity and activity. Although acclimation and acclimatization studies have long suggested that daily reductions in core temperature are essential to elicit significant metabolic changes in response to repeated cold exposure, this has never directly been demonstrated. The aim of the present study is to determine whether daily cold-water immersion, resulting in a significant fall in core temperature, can further reduce shivering intensity during mild acute cold exposure. Seven men underwent 1 h of daily cold-water immersion (14°C) for seven consecutive days. Immediately before and following the acclimation protocol, participants underwent a mild cold exposure using a novel skin temperature clamping cold exposure protocol to elicit the same thermogenic rate between trials. Metabolic heat production, shivering intensity, muscle recruitment pattern, and thermal sensation were measured throughout these experimental sessions. Uncompensable cold acclimation reduced total shivering intensity by 36% (P = 0.003), without affecting whole body heat production, double what was previously shown from a 4-wk mild acclimation. This implies that nonshivering thermogenesis increased to supplement the reduction in the thermogenic contribution of shivering. As fuel selection did not change following the 7-day cold acclimation, we suggest that the nonshivering mechanism recruited must rely on a similar fuel mixture to produce this heat. The more significant reductions in shivering intensity compared with a longer mild cold acclimation suggest important differential metabolic responses, resulting from an uncompensable compared with compensable cold acclimation. NEW & NOTEWORTHY Several decades of research have been dedicated to reducing the presence of shivering during cold exposure. The present study aims to determine whether as little as seven consecutive days of cold-water immersion is sufficient to reduce shivering and increase nonshivering thermogenesis. We provide evidence that whole body nonshivering thermogenesis can be increased to offset a reduction in shivering activity to maintain endogenous heat production. This demonstrates that short, but intense cold stimulation can elicit rapid metabolic changes in humans, thereby improving our comfort and ability to perform various motor tasks in the cold. Further research is required to determine the nonshivering processes that are upregulated within this short time period.


Subject(s)
Acclimatization/physiology , Body Temperature Regulation/physiology , Shivering/physiology , Thermogenesis/physiology , Adipose Tissue, Brown/physiology , Adult , Cold Temperature , Hot Temperature , Humans , Male , Skin Temperature/physiology , Young Adult
8.
Med Sci Sports Exerc ; 50(9): 1859-1867, 2018 09.
Article in English | MEDLINE | ID: mdl-30113539

ABSTRACT

PURPOSE: Prolonged work in the heat may exacerbate the rise in core temperature on the next work day, especially in older workers who display impairments in whole-body heat loss that increase body heat storage and core temperature relative to young adults during heat stress. We therefore evaluated whether whole-body heat loss in older adults was impaired on the day after prolonged work in the heat. METHODS: Whole-body heat exchange and heat storage were assessed in nine older (53-64 yr) men during three 30-min bouts of semirecumbent cycling at fixed rates of metabolic heat production (150 [Ex1], 200 [Ex2], 250 W·m [Ex3]), each separated by 15-min recovery, in hot-dry conditions (40°C, 20% relative humidity), immediately before (day 1), and on the day after (day 2) a prolonged, work simulation (~7.5 h) involving moderate-intensity intermittent exercise in hot-dry conditions (38°C, 34% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was quantified as the temporal summation of heat production and loss. RESULTS: Total heat loss (mean ± SD) during Ex1 did not differ between days 1 and 2 (151 ± 15 and 147 ± 14 W·m, respectively; P = 0.27), but was attenuated on day 2 during Ex2 (181 ± 15 W·m) and Ex3 (218 ± 16 W·m) relative to day 1 (192 ± 14 and 230 ± 19 W·m, respectively; both P < 0.01). Consequently, body heat storage throughout the protocol on day 2 (276 ± 114 kJ) was 31% greater than on day 1 (191 ± 87 kJ; P < 0.01). CONCLUSIONS: Prolonged work in the heat causes next-day impairments in whole-body heat loss, which exacerbate heat storage and may elevate the risk of heat injury on the following day in older workers.


Subject(s)
Body Temperature Regulation , Exercise , Hot Temperature , Calorimetry, Indirect , Fatigue , Heart Rate , Humans , Male , Middle Aged , Organism Hydration Status , Thermogenesis , Time Factors
9.
Appl Physiol Nutr Metab ; 43(4): 423-426, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29316406

ABSTRACT

We assessed the effect of metaboreceptor activation on whole-body evaporative heat loss (WB-EHL) in 12 men (aged 24 ± 4 years) in the early-to-late stages of a 60-min exercise recovery in the heat. Metaboreceptor activation induced by 1-min isometric-handgrip (IHG) exercise followed by 5-min forearm ischemia to trap metabolites increased WB-EHL by 25%-31% and 26%-34% during the ischemic period relative to IHG-only and control (natural recovery only), respectively, throughout recovery. We show that metaboreceptor activation enhances WB-EHL in recovery.


Subject(s)
Chemoreceptor Cells/metabolism , Energy Metabolism , Exercise/physiology , Muscle Contraction , Muscle, Skeletal/metabolism , Sweating , Adult , Humans , Male , Recovery of Function , Signal Transduction , Time Factors , Young Adult
10.
Med Sci Sports Exerc ; 50(1): 159-168, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28902126

ABSTRACT

PURPOSE: To date, there have been mixed findings on whether greater anticipatory reductions in self-paced exercise intensity in the heat are mediated by early differences in rate of body heat storage. The disparity may be due to an inability to accurately measure minute-to-minute changes in whole-body heat loss. Thus, we evaluated whether early differences in rate of heat storage can mediate exercise intensity during self-paced cycling at a fixed rate of perceived exertion (RPE of 16; hard-to-very-hard work effort) in COOL (15°C), NORMAL (25°C), and HOT (35°C) ambient conditions. METHODS: On separate days, nine endurance-trained cyclists exercised in COOL, NORMAL, and HOT conditions at a fixed RPE until work rate (measured after first 5 min of exercise) decreased to 70% of starting values. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. RESULTS: Total exercise time was shorter in HOT (57 ± 20 min) relative to both NORMAL (72 ± 23 min, P = 0.004) and COOL (70 ± 26 min, P = 0.045). Starting work rate was lower in HOT (153 ± 31 W) compared with NORMAL (166 ± 27 W, P = 0.024) and COOL (170 ± 33 W, P = 0.037). Rate of heat storage was similar between conditions during the first 4 min of exercise (all P > 0.05). Thereafter, rate of heat storage was lower in HOT relative to NORMAL and COOL until 30 min of exercise (last common time-point between conditions; all P < 0.05). Further, rate of heat storage was significantly higher in COOL compared with NORMAL at 15 min (P = 0.026) and 20 min (P = 0.020) of exercise. No differences were measured at end exercise. CONCLUSIONS: We show that rate of heat storage does not mediate exercise intensity during self-paced exercise at a fixed RPE in cool to hot ambient conditions.


Subject(s)
Body Temperature Regulation , Exercise , Adult , Body Temperature , Calorimetry, Indirect , Humans , Male , Thermogenesis , Young Adult
11.
Med Sci Sports Exerc ; 50(2): 318-326, 2018 02.
Article in English | MEDLINE | ID: mdl-28991046

ABSTRACT

PURPOSE: Heat strain is known to be exacerbated on the second of consecutive work days. We therefore evaluated whether prolonged work in the heat would impair whole-body heat loss capacity on the next day. METHODS: To evaluate this possibility, we assessed changes in whole-body heat exchange and heat storage in eight young (26 ± 4 yr) men during heat stress tests performed on the same day before (day 1) and on the day after (day 2) a prolonged work simulation. Each heat stress test involved three, 30-min bouts of semirecumbent cycling at fixed rates of metabolic heat production (200 W·m (Ex1), 250 W·m (Ex2), and 300 W·m (Ex3)), each separated by 15-min recovery, under hot, dry conditions (40°C, 20% relative humidity). The work simulation (7.5 h) involved three moderate-intensity intermittent work bouts (2 h), each separated by 30-min rest breaks, under similarly hot, dry conditions (38°C, 34% relative humidity). Total heat loss (evaporative ± dry heat exchange) and metabolic heat production were measured using direct and indirect calorimetry, respectively. Body heat storage was quantified as the temporal summation of heat production and loss. RESULTS: Total heat loss did not differ between days 1 and 2 (P = 0.66) and averaged (mean ± 95% confidence interval) 185 ± 7 W (Ex1), 233 ± 7 W (Ex2), and 261 ± 5 W (Ex3) across test days. Consequently, the change in body heat storage was also similar between days 1 and 2 (P = 0.32), averaging 133 ± 15 kJ (Ex1), 99 ± 16 kJ (Ex2), and 184 ± 15 kJ (Ex3) across test days. CONCLUSIONS: When assessed under controlled laboratory conditions in young men, prolonged work in the heat does not seem to impair whole-body heat loss or exacerbate heat storage on the following day.


Subject(s)
Body Temperature Regulation , Hot Temperature , Workload , Adult , Calorimetry, Indirect , Exercise Test , Fatigue , Humans , Male , Time Factors , Young Adult
12.
Temperature (Austin) ; 4(1): 79-88, 2017.
Article in English | MEDLINE | ID: mdl-28349096

ABSTRACT

We examined whether older individuals experience greater levels of hyperthermia and cardiovascular strain during an extreme heat exposure compared to young adults. During a 3-hour extreme heat exposure (44°C, 30% relative humidity), we compared body heat storage, core temperature (rectal, visceral) and cardiovascular (heart rate, cardiac output, mean arterial pressure, limb blood flow) responses of young adults (n = 30, 19-28 years) against those of older adults (n = 30, 55-73 years). Direct calorimetry measured whole-body evaporative and dry heat exchange. Body heat storage was calculated as the temporal summation of heat production (indirect calorimetry) and whole-body heat loss (direct calorimetry) over the exposure period. While both groups gained a similar amount of heat in the first hour, the older adults showed an attenuated increase in evaporative heat loss (p < 0.033) in the first 30-min. Thereafter, the older adults were unable to compensate for a greater rate of heat gain (11 ± 1 ; p < 0.05) with a corresponding increase in evaporative heat loss. Older adults stored more heat (358 ± 173 kJ) relative to their younger (202 ± 92 kJ; p < 0.001) counterparts at the end of the exposure leading to greater elevations in rectal (p = 0.043) and visceral (p = 0.05) temperatures, albeit not clinically significant (rise < 0.5°C). Older adults experienced a reduction in calf blood flow (p < 0.01) with heat stress, yet no differences in cardiac output, blood pressure or heart rate. We conclude, in healthy habitually active individuals, despite no clinically observable cardiovascular or temperature changes, older adults experience greater heat gain and decreased limb perfusion in response to 3-hour heat exposure.

13.
Am J Physiol Regul Integr Comp Physiol ; 311(4): R669-R675, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27511279

ABSTRACT

We examined whether older individuals with and without Type 2 diabetes (T2D) experience differences in heart rate variability (HRV) during a 3-h exposure to high heat stress compared with young adults. Young (Young; n = 22; 23 ± 3 yr) and older individuals with (T2D; n = 11; 59 ± 9 yr) and without (Older; n = 25; 63 ± 5 yr) T2D were exposed to heat stress (44°C, 30% relative humidity) for 3 h. Fifty-five HRV measures were assessed for 15 min at baseline and at minutes 82.5-97.5 (Mid) and minutes 165-180 (End) during heat stress. When compared with Young, a similar number of HRV indices were significantly different (P < 0.05) in Older (Baseline: 35; Mid: 29; End: 32) and T2D (Baseline: 31; Mid: 30; End: 27). In contrast, the number of HRV indices significantly different (P < 0.05) between Older and T2D were far fewer (Baseline: 13, Mid: 1, End: 3). Within-group analyses demonstrated a greater change in the Young group's HRV during heat stress compared with Older and T2D; the number of significantly different (P < 0.05) HRV indices between baseline and End were 42, 29, and 20, for Young, Older, and T2D, respectively. Analysis of specific HRV domains suggest that the Young group experienced greater sympathetic activity during heat stress compared with Older and T2D. In conclusion, when compared with young, older individuals with and without T2D demonstrate low HRV at baseline and less change in HRV (including an attenuated sympathetic response) during 3 h high heat stress, potentially contributing to impaired thermoregulatory function.


Subject(s)
Aging , Body Temperature Regulation , Diabetes Mellitus, Type 2/physiopathology , Heart Rate , Heat-Shock Response , Sympathetic Nervous System/physiology , Adult , Body Temperature , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Young Adult
14.
Comput Astrophys Cosmol ; 3(1): 4, 2016.
Article in English | MEDLINE | ID: mdl-31149559

ABSTRACT

Modern cosmological simulations have reached the trillion-element scale, rendering data storage and subsequent analysis formidable tasks. To address this circumstance, we present a new MPI-parallel approach for analysis of simulation data while the simulation runs, as an alternative to the traditional workflow consisting of periodically saving large data sets to disk for subsequent 'offline' analysis. We demonstrate this approach in the compressible gasdynamics/N-body code Nyx, a hybrid MPI + OpenMP code based on the BoxLib framework, used for large-scale cosmological simulations. We have enabled on-the-fly workflows in two different ways: one is a straightforward approach consisting of all MPI processes periodically halting the main simulation and analyzing each component of data that they own ('in situ'). The other consists of partitioning processes into disjoint MPI groups, with one performing the simulation and periodically sending data to the other 'sidecar' group, which post-processes it while the simulation continues ('in-transit'). The two groups execute their tasks asynchronously, stopping only to synchronize when a new set of simulation data needs to be analyzed. For both the in situ and in-transit approaches, we experiment with two different analysis suites with distinct performance behavior: one which finds dark matter halos in the simulation using merge trees to calculate the mass contained within iso-density contours, and another which calculates probability distribution functions and power spectra of various fields in the simulation. Both are common analysis tasks for cosmology, and both result in summary statistics significantly smaller than the original data set. We study the behavior of each type of analysis in each workflow in order to determine the optimal configuration for the different data analysis algorithms.

16.
J Occup Environ Hyg ; 12(9): 654-67, 2015.
Article in English | MEDLINE | ID: mdl-25898230

ABSTRACT

We evaluated the effect of arc-flash and fire-resistant (AFR) clothing ensembles (CE) on whole-body heat dissipation during work in the heat. On 10 occasions, 7 males performed four 15-min cycling bouts at a fixed rate of metabolic heat production (400 W) in the heat (35°C), each separated by 15-min of recovery. Whole-body heat loss and metabolic heat production were measured by direct and indirect calorimetry, respectively. Body heat storage was calculated as the temporal summation of heat production and heat loss. Responses were compared in a semi-nude state and while wearing two CE styles: (1) single-piece (coveralls) and (2) two-piece (workpant + long-sleeve shirt). For group 1, there was one non-AFR single-piece CE (CE1STD) and three single-piece CE with AFR properties (CE2AFR, CE3AFR, CE4AFR). For group 2, there was one non-AFR two-piece CE (CE5STD) and four two-piece CE with AFR properties (CE6AFR, CE7AFR, CE8AFR, CE9AFR). The workpants for CE6AFR were not AFR-rated, while a cotton undershirt was also worn for conditions CE8AFR and CE9AFR and for all single-piece CE. Heat storage for all conditions (CE1STD: 328 ± 55, CE2AFR: 335 ± 87, CE3AFR: 309 ± 95, CE4AFR: 403 ± 104, CE5STD: 253 ± 78, CE6AFR: 268 ± 89, CE7AFR: 302 ± 70, CE8AFR: 360 ± 36, CE9AFR: 381 ± 99 kJ) was greater than the semi-nude state (160 ± 124 kJ) (all p ≤ 0.05). No differences were measured between single-piece uniforms (p = 0.273). Among the two-piece uniforms, heat storage was greater for CE8AFR and CE9AFR relative to CE5STD and CE6AFR (all p ≤ 0.05), but not CE7AFR (both p > 0.05). Differences between clothing styles were measured such that greater heat storage was observed in both CE1STD and CE2-4AFR relative to CE5STD. Further, heat storage was greater in CE2AFR and CE4AFR relative to CE6AFR, while it was greater in CE4AFR compared to CE7AFR. Body heat storage during work in the heat was not influenced by the use of AFR fabrics in the single- or two-piece uniforms albeit less heat was stored in the two-piece uniforms when no undershirt was worn. However, heat storage was comparable between clothing styles when an undershirt was worn with the two-piece uniform.


Subject(s)
Body Temperature Regulation , Hot Temperature , Physical Exertion , Protective Clothing , Adult , Humans , Male , Protective Clothing/adverse effects
17.
Med Sci Sports Exerc ; 47(6): 1272-80, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25259541

ABSTRACT

PURPOSE: The objective of this study was to examine the effect of ingested water temperature on heat balance during exercise as assessed by direct calorimetry. METHODS: Ten healthy males (25 ± 4 yr) cycled at 50% V˙O2peak (equivalent rate of metabolic heat production (M-W) of 523 ± 84 W) for 75 min under thermocomfortable conditions (25°C, 25% relative humidity) while consuming either hot (50°C) or cold (1.5°C) water. Four 3.2 mL·kg⁻¹ boluses of hot or cold water were consumed 5 min before and at 15, 30, and 45 min after the onset of exercise. Total heat loss (HL = evaporative heat loss (HE) ± dry heat exchange (HD)) and M-W were measured by direct and indirect calorimetry, respectively. Change in body heat content (ΔHb) was calculated as the temporal summation of M-W and HL and adjusted for changes in heat transfer from the ingested fluid (Hfluid). RESULTS: The absolute difference for HL (209 ± 81 kJ) was similar to the absolute difference of Hfluid (204 ± 36 kJ) between conditions (P = 0.785). Furthermore, the difference in HL was primarily explained by the corresponding changes in HE (hot: 1538 ± 393 kJ; cold: 1358 ± 330 kJ) because HD was found to be similar between conditions (P = 0.220). Consequently, no difference in ΔHb was observed between the hot (364 ± 152 kJ) and cold (363 ± 134 kJ) conditions (P = 0.971) during exercise. CONCLUSION: We show that ingestion of hot water elicits a greater HL relative to cold water ingestion during exercise. However, this response was only compensated for the heat of the ingested fluid as evidenced by similar ΔHb between conditions. Therefore, our findings indicate that relative to cold water ingestion, consuming hot water does not provide a thermoregulatory advantage. Both hot and cold water ingestion results in the same amount of heat stored during prolonged moderate-intensity exercise.


Subject(s)
Body Temperature Regulation/physiology , Drinking , Temperature , Water , Adult , Anthropometry , Calorimetry/methods , Exercise Test , Humans , Male
18.
Med Sci Sports Exerc ; 47(2): 390-400, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24870585

ABSTRACT

PURPOSE: The purpose of this study was to quantify how much whole-body heat loss increases during heat acclimation and the decay in these improvements after heat acclimation. METHODS: Ten males underwent a 14-d heat acclimation protocol that consisted of 90 min of cycling in the heat (40°C, 20% relative humidity) at approximately 50% of maximum oxygen consumption. Before (day 0), during (day 7), and at the end (day 14) of the heat acclimation protocol as well as 7 and 14 d after heat acclimation (days 21 and 28), whole-body heat exchange (evaporative and dry) was measured using direct calorimetry during three bouts of 30-min exercise at 300 (Ex1), 350 (Ex2), and 400 W·m (Ex3), each separated by 10 and 20 min of recovery, respectively, at 35°C and 16% relative humidity. Concurrent measurements of metabolic heat production (indirect calorimetry) allowed for the direct calculation of change in body heat content (ΔHb). RESULTS: After accounting for an increase in net dry heat gain, increases in whole-body evaporative heat loss were evident for Ex2 and Ex3 on day 7 (Ex2, 4.9 ± 5.6%; Ex3, 9.0 ± 6.0%; both P ≤ 0.05) and all heat loads on day 14 (Ex1, 7.6 ± 8.3%; Ex2, 7.7 ± 5.5%; Ex3, 11.2 ± 4.6%; all P ≤ 0.05) relative to day 0 (Ex1, 494 ± 27 W; Ex2, 583 ± 21 W; Ex3, 622 ± 36 W). As a result, a lower cumulative ΔHb was measured on day 7 (-18 ± 8%, P ≤ 0.001) and day 14 (-26 ± 10%, P ≤ 0.001) compared with that measured on day 0 (1062 ± 123 kJ). Most of these improvements were retained after 2 wk of nonexposure to the heat. CONCLUSIONS: This is the first study to quantify how much 14 d of heat acclimation can increase whole-body evaporative heat loss, which can improve by as much as approximately 11%.


Subject(s)
Acclimatization/physiology , Body Temperature Regulation/physiology , Exercise/physiology , Hot Temperature , Adult , Calorimetry , Exercise Test , Heart Rate , Humans , Male , Time Factors , Young Adult
19.
Eur J Appl Physiol ; 114(12): 2551-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25118838

ABSTRACT

PURPOSE: We examined whether treatment for exertional heat stress via ice water immersion (IWI) or natural recovery is affected by the intensity of physical work performed and, thus, the time taken to reach hyperthermia. METHODS: Nine adults (18-45 years; 17.9 ± 2.8 percent body fat; 57.0 ± 2.0 mL kg(-1) min(-1) peak oxygen uptake) completed four conditions incorporating either walking or jogging at 40 °C (20 % relative humidity) while wearing a non-permeable rain poncho. Upon reaching 39.5 °C rectal temperature (Tre), participants recovered either via IWI in 2 °C water or via natural recovery (seated in a ~29 °C environment) until T re returned to 38 °C. RESULTS: Cooling rates were greater in the IWI [Tre: 0.24 °C min(-1); esophageal temperature (Tes): 0.24 °C min(-1)] than the natural recovery (Tre and Tes: 0.03 °C min(-1)) conditions (p < 0.001) with no differences between the two moderate and the two low intensity conditions (p > 0.05). Cooling rates for T re and T es were greater in the 39.0-38.5 °C (Tre: 0.19 °C min(-1); Tes: 0.31 °C min(-1)) compared with the 39.5-39.0 °C (Tre: 0.11 °C min(-1); Tes: 0.13 °C min(-1)) period across conditions (p < 0.05). Similar reductions in heart rate and mean arterial pressure were observed during recovery across conditions (p > 0.05), albeit occurred faster during IWI. Percent change in plasma volume at the end of natural recovery and IWI was 5.96 and 9.58%, respectively (p < 0.001). CONCLUSION: The intensity of physical work performed and, thus, the time taken to reach hyperthermia does not affect the effectiveness of either IWI treatment or natural recovery. Therefore, while the path to hyperthermia may be different for each patient, the path to recovery must always be immediate IWI treatment.


Subject(s)
Body Temperature Regulation/physiology , Body Temperature/physiology , Cryotherapy/methods , Heat Stress Disorders/therapy , Physical Exertion/physiology , Adolescent , Adult , Heart Rate/physiology , Heat Stress Disorders/physiopathology , Humans , Middle Aged , Oxygen Consumption/physiology , Treatment Outcome , Young Adult
20.
Med Sci Sports Exerc ; 46(9): 1727-35, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24784433

ABSTRACT

PURPOSE: We examined the effect of differences in body surface area-to-lean body mass ratio (AD/LBM) on core temperature cooling rates during cold water immersion (CWI, 2°C) and temperate water immersion (TWI, 26°C) after exercise-induced hyperthermia. METHODS: Twenty male participants were divided into two groups: high (315.6 ± 7.9 cm·kg, n = 10) and low (275.6 ± 8.6 cm·kg, n = 10) AD/LBM. On two separate occasions, participants ran on a treadmill in the heat (40.0°C, 20% relative humidity) wearing an impermeable rain suit until rectal temperature reached 40.0°C. After exercise, participants were immersed up to the nipples (arms remained out of the water) in either a CWI (2°C) or a TWI (26°C) circulated water bath until rectal temperature returned to 37.5°C. RESULTS: Overall rectal cooling rates were significantly different between experimental groups (high vs low AD/LBM, P = 0.005) and between immersion conditions (CWI vs TWI, P < 0.001). Individuals with a high AD/LBM had an approximately 1.7-fold greater overall rectal cooling rate relative to those with low AD/LBM during both CWI (high: 0.27°C·min ± 0.10°C·min vs low: 0.16°C·min ± 0.10°C·min) and TWI (high: 0.10°C·min ± 0.05°C·min vs low: 0.06°C·min ± 0.02°C·min). Further, the overall rectal cooling rates during CWI were approximately 2.7-fold greater than during TWI for both the high (CWI: 0.27°C·min ± 0.10°C·min vs TWI: 0.10°C·min ± 0.05°C·min) and the low (CWI: 0.16°C·min ± 0.10°C·min vs TWI: 0.06°C·min ± 0.02°C·min) AD/LBM groups. CONCLUSION: We show that individuals with a low AD/LBM have a reduced rectal cooling rate and take longer to cool than those with a high AD/LBM during both CWI and TWI. However, CWI provides the most effective cooling treatment irrespective of physical differences.


Subject(s)
Body Surface Area , Body Temperature , Cold Temperature , Fever/therapy , Hot Temperature , Immersion , Physical Exertion/physiology , Adiposity/physiology , Adult , Body Mass Index , Cold Temperature/adverse effects , Esophagus/physiology , Fever/etiology , Humans , Male , Rectum/physiology , Running/physiology , Time Factors , Water , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...