Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(7): e11719, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39011130

ABSTRACT

Herbarium specimens are increasingly being used as sources of information to understand the ecology and evolution of plants and their associated microbes. Most studies have used specimens as a source of genetic material using culture-independent approaches. We demonstrate that herbarium specimens can also be used to culture nodule-associated bacteria, opening the possibility of using specimens to understand plant-microbe interactions at new spatiotemporal scales. We used historic and contemporary nodules of a common legume, Medicago lupulina, to create a culture collection. We were able to recover historic bacteria in 15 genera from three specimens (collected in 1950, 2004, and 2015). This work is the first of its kind to isolate historic bacteria from herbarium specimens. Future work should include inoculating plants with historic strains to see if they produce nodules and if they affect plant phenotype and fitness. Although we were unable to recover any Ensifer, the main symbiont of Medicago lupulina, we recovered some other potential nodulating species, as well as many putative growth-promoting bacteria.

2.
NAR Genom Bioinform ; 6(2): lqae063, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38846350

ABSTRACT

Biological nitrogen fixation is a fundamental biogeochemical process that transforms molecular nitrogen into biologically available nitrogen via diazotrophic microbes. Diazotrophs anaerobically fix nitrogen using the nitrogenase enzyme which is arranged in three different gene clusters: (i) molybdenum nitrogenase (nifHDK) is the most abundant, followed by it's alternatives, (ii) vanadium nitrogenase (vnfHDK) and (iii) iron nitrogenase (anfHDK). Multiple databases have been constructed as resources for diazotrophic 'omics analysis; however, an integrated database based on whole genome references does not exist. Here, we present NFixDB (Nitrogen Fixation DataBase), a comprehensive integrated whole genome based database for diazotrophs, which includes all nitrogenases (nifHDK, vnfHDK, anfHDK) and nitrogenase-like enzymes (e.g. nflHD) linked to ribosomal RNA operons (16S-5S-23S). NFixDB was computed using Hidden Markov Models (HMMs) against the entire whole genome based Genome Taxonomy Database (GTDB R214), providing searchable reference HMMs for all nitrogenase and nitrogenase-like genes, complete ribosomal RNA operons, both GTDB and NCBI/RefSeq taxonomy, and an SQL database for querying matches. We compared NFixDB to nifH databases from Buckley, Zehr, Mise and FunGene finding extensive evidence of nifH, in addition to vnfH and nflH. NFixDB contains >4000 verified nifHDK sequences contained on 50 unique phyla of bacteria and archaea. NFixDB provides the first comprehensive nitrogenase database available to researchers unlocking diazotrophic microbial potential.

3.
Bioinform Adv ; 4(1): vbae061, 2024.
Article in English | MEDLINE | ID: mdl-38745763

ABSTRACT

Motivation: MerCat2 ("Mer-Catenate2") is a versatile, parallel, scalable and modular property software package for robustly analyzing features in omics data. Using massively parallel sequencing raw reads, assembled contigs, and protein sequences from any platform as input, MerCat2 performs k-mer counting of any length k, resulting in feature abundance counts tables, quality control reports, protein feature metrics, and graphical representation (i.e. principal component analysis (PCA)). Results: MerCat2 allows for direct analysis of data properties in a database-independent manner that initializes all data, which other profilers and assembly-based methods cannot perform. MerCat2 represents an integrated tool to illuminate omics data within a sample for rapid cross-examination and comparisons. Availability and implementation: MerCat2 is written in Python and distributed under a BSD-3 license. The source code of MerCat2 is freely available at https://github.com/raw-lab/mercat2. MerCat2 is compatible with Python 3 on Mac OS X and Linux. MerCat2 can also be easily installed using bioconda: mamba create -n mercat2 -c conda-forge -c bioconda mercat2.

4.
Proc Natl Acad Sci U S A ; 121(13): e2311127121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38507447

ABSTRACT

Microbiota comprise the bulk of life's diversity, yet we know little about how populations of microbes accumulate adaptive diversity across natural landscapes. Adaptation to stressful soil conditions in plants provides seminal examples of adaptation in response to natural selection via allelic substitution. For microbes symbiotic with plants however, horizontal gene transfer allows for adaptation via gene gain and loss, which could generate fundamentally different evolutionary dynamics. We use comparative genomics and genetics to elucidate the evolutionary mechanisms of adaptation to physiologically stressful serpentine soils in rhizobial bacteria in western North American grasslands. In vitro experiments demonstrate that the presence of a locus of major effect, the nre operon, is necessary and sufficient to confer adaptation to nickel, a heavy metal enriched to toxic levels in serpentine soil, and a major axis of environmental soil chemistry variation. We find discordance between inferred evolutionary histories of the core genome and nreAXY genes, which often reside in putative genomic islands. This suggests that the evolutionary history of this adaptive variant is marked by frequent losses, and/or gains via horizontal acquisition across divergent rhizobium clades. However, different nre alleles confer distinct levels of nickel resistance, suggesting allelic substitution could also play a role in rhizobium adaptation to serpentine soil. These results illustrate that the interplay between evolution via gene gain and loss and evolution via allelic substitution may underlie adaptation in wild soil microbiota. Both processes are important to consider for understanding adaptive diversity in microbes and improving stress-adapted microbial inocula for human use.


Subject(s)
Metals, Heavy , Rhizobium , Humans , Rhizobium/genetics , Nickel , Metals, Heavy/toxicity , Genomics , Soil
5.
Environ Microbiome ; 18(1): 50, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37287059

ABSTRACT

BACKGROUND: Root and soil microbial communities constitute the below-ground plant microbiome, are drivers of nutrient cycling, and affect plant productivity. However, our understanding of their spatiotemporal patterns is confounded by exogenous factors that covary spatially, such as changes in host plant species, climate, and edaphic factors. These spatiotemporal patterns likely differ across microbiome domains (bacteria and fungi) and niches (root vs. soil). RESULTS: To capture spatial patterns at a regional scale, we sampled the below-ground microbiome of switchgrass monocultures of five sites spanning > 3 degrees of latitude within the Great Lakes region. To capture temporal patterns, we sampled the below-ground microbiome across the growing season within a single site. We compared the strength of spatiotemporal factors to nitrogen addition determining the major drivers in our perennial cropping system. All microbial communities were most strongly structured by sampling site, though collection date also had strong effects; in contrast, nitrogen addition had little to no effect on communities. Though all microbial communities were found to have significant spatiotemporal patterns, sampling site and collection date better explained bacterial than fungal community structure, which appeared more defined by stochastic processes. Root communities, especially bacterial, were more temporally structured than soil communities which were more spatially structured, both across and within sampling sites. Finally, we characterized a core set of taxa in the switchgrass microbiome that persists across space and time. These core taxa represented < 6% of total species richness but > 27% of relative abundance, with potential nitrogen fixing bacteria and fungal mutualists dominating the root community and saprotrophs dominating the soil community. CONCLUSIONS: Our results highlight the dynamic variability of plant microbiome composition and assembly across space and time, even within a single variety of a plant species. Root and soil fungal community compositions appeared spatiotemporally paired, while root and soil bacterial communities showed a temporal lag in compositional similarity suggesting active recruitment of soil bacteria into the root niche throughout the growing season. A better understanding of the drivers of these differential responses to space and time may improve our ability to predict microbial community structure and function under novel conditions.

6.
J Evol Biol ; 35(6): 844-854, 2022 06.
Article in English | MEDLINE | ID: mdl-35506571

ABSTRACT

In mutualisms, variation at genes determining partner fitness provides the raw material upon which coevolutionary selection acts, setting the dynamics and pace of coevolution. However, we know little about variation in the effects of genes that underlie symbiotic fitness in natural mutualist populations. In some species of legumes that form root nodule symbioses with nitrogen-fixing rhizobial bacteria, hosts secrete nodule-specific cysteine-rich (NCR) peptides that cause rhizobia to differentiate in the nodule environment. However, rhizobia can cleave NCR peptides through the expression of genes like the plasmid-borne Host range restriction peptidase (hrrP), whose product degrades specific NCR peptides. Although hrrP activity can confer host exploitation by depressing host fitness and enhancing symbiont fitness, the effects of hrrP on symbiosis phenotypes depend strongly on the genotypes of the interacting partners. However, the effects of hrrP have yet to be characterised in a natural population context, so its contribution to variation in wild mutualist populations is unknown. To understand the distribution of effects of hrrP in wild rhizobia, we measured mutualism phenotypes conferred by hrrP in 12 wild Ensifer medicae strains. To evaluate context dependency of hrrP effects, we compared hrrP effects across two Medicago polymorpha host genotypes and across two experimental years for five E. medicae strains. We show for the first time in a natural population context that hrrP has a wide distribution of effect sizes for many mutualism traits, ranging from strongly positive to strongly negative. Furthermore, we show that hrrP effect size varies across host genotypes and experiment years, suggesting that researchers should be cautious about extrapolating the role of genes in natural populations from controlled laboratory studies of single genetic variants.


Subject(s)
Fabaceae , Rhizobium , Fabaceae/genetics , Fabaceae/microbiology , Negotiating , Peptides , Rhizobium/genetics , Symbiosis/genetics , Vegetables
7.
Ecol Lett ; 24(9): 1824-1834, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34110064

ABSTRACT

Nearly all organisms participate in multiple mutualisms, and complementarity within these complex interactions can result in synergistic fitness effects. However, it remains largely untested how multiple mutualisms impact eco-evolutionary dynamics in interacting species. We tested how multiple microbial mutualists-N-fixing bacteria and mycorrrhizal fungi-affected selection and heritability of traits in their shared host plant (Medicago truncatula), as well as fitness alignment between partners. Our results demonstrate for the first time that multiple mutualisms synergistically affect the selection and heritability of host traits and enhance fitness alignment between mutualists. Specifically, we found interaction with multiple microbial symbionts doubled the strength of natural selection on a plant architectural trait, resulted in 2- to 3-fold higher heritability of plant reproductive success, and more than doubled fitness alignment between N-fixing bacteria and plants. These findings show synergism generated by multiple mutualisms extends to key components of microevolutionary change, emphasising the importance of multiple mutualism effects on evolutionary trajectories.


Subject(s)
Medicago truncatula , Mycorrhizae , Rhizobium , Medicago truncatula/genetics , Rhizobium/genetics , Selection, Genetic , Symbiosis
8.
Ecology ; 102(4): e03290, 2021 04.
Article in English | MEDLINE | ID: mdl-33484580

ABSTRACT

Modern coexistence theory holds that stabilizing mechanisms, whereby species limit the growth of conspecifics more than that of other species, are necessary for species to coexist. Here, we used experimental and observational approaches to assess stabilizing forces in eight locally co-occurring, annual, legume species in the genus Trifolium. We experimentally measured self-limitation in the field by transplanting Trifolium species into each other's field niches while varying competition and related these patterns to the field coexistence dynamics of natural Trifolium populations. We found that Trifolium species differed in their responses to local environmental gradients and performed best in their home environments, consistent with habitat specialization and presenting a possible barrier to coexistence at fine scales. We found significant self-limitation for 5 of 42 pairwise species combinations measured experimentally with competitors absent, indicating stabilization through plant-soil feedbacks and other indirect interactions, whereas self-limitation was largely absent when neighbors were present, indicating destabilizing effects of direct plant-plant interactions. The degree of self-limitation measured in our field experiment explained year-to-year dynamics of coexistence by Trifolium species in natural communities. By assessing stabilizing forces and environmental responses in the full n-dimensional field niche, this study sheds light on the roles of habitat specialization, plant-soil feedbacks, and plant interactions in determining species coexistence at local scales.


Subject(s)
Ecosystem , Soil , Trifolium/growth & development , Plants
9.
Evolution ; 75(3): 731-747, 2021 03.
Article in English | MEDLINE | ID: mdl-33433925

ABSTRACT

Although most invasive species engage in mutualism, we know little about how mutualism evolves as partners colonize novel environments. Selection on cooperation and standing genetic variation for mutualism traits may differ between a mutualism's invaded and native ranges, which could alter cooperation and coevolutionary dynamics. To test for such differences, we compare mutualism traits between invaded- and native-range host-symbiont genotype combinations of the weedy legume, Medicago polymorpha, and its nitrogen-fixing rhizobium symbiont, Ensifer medicae, which have coinvaded North America. We find that mutualism benefits for plants are indistinguishable between invaded- and native-range symbioses. However, rhizobia gain greater fitness from invaded-range mutualisms than from native-range mutualisms, and this enhancement of symbiont fecundity could increase the mutualism's spread by increasing symbiont availability during plant colonization. Furthermore, mutualism traits in invaded-range symbioses show lower genetic variance and a simpler partitioning of genetic variance between host and symbiont sources, compared to native-range symbioses. This suggests that biological invasion has reduced mutualists' potential to respond to coevolutionary selection. Additionally, rhizobia bearing a locus (hrrP) that can enhance symbiotic fitness have more exploitative phenotypes in invaded-range than in native-range symbioses. These findings highlight the impacts of biological invasion on the evolution of mutualistic interactions.


Subject(s)
Medicago/microbiology , Sinorhizobium/physiology , Symbiosis/genetics , Biological Evolution , Genotype , Introduced Species , Medicago/genetics , Rhizobium , Sinorhizobium/genetics
10.
Proc Biol Sci ; 288(1942): 20202483, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33434463

ABSTRACT

Evolutionary biologists typically envision a trait's genetic basis and fitness effects occurring within a single species. However, traits can be determined by and have fitness consequences for interacting species, thus evolving in multiple genomes. This is especially likely in mutualisms, where species exchange fitness benefits and can associate over long periods of time. Partners may experience evolutionary conflict over the value of a multi-genomic trait, but such conflicts may be ameliorated by mutualism's positive fitness feedbacks. Here, we develop a simulation model of a host-microbe mutualism to explore the evolution of a multi-genomic trait. Coevolutionary outcomes depend on whether hosts and microbes have similar or different optimal trait values, strengths of selection and fitness feedbacks. We show that genome-wide association studies can map joint traits to loci in multiple genomes and describe how fitness conflict and fitness feedback generate different multi-genomic architectures with distinct signals around segregating loci. Partner fitnesses can be positively correlated even when partners are in conflict over the value of a multi-genomic trait, and conflict can generate strong mutualistic dependency. While fitness alignment facilitates rapid adaptation to a new optimum, conflict maintains genetic variation and evolvability, with implications for applied microbiome science.


Subject(s)
Microbiota , Symbiosis , Biological Evolution , Genome-Wide Association Study , Phenotype
11.
J Electrochem Soc ; 168(8)2021 Aug.
Article in English | MEDLINE | ID: mdl-36311278

ABSTRACT

Soil health is a complex phenomenon that reflects the ability of soil to support both plant growth and other ecosystem functions. To our knowledge, research on extracellular electron transfer processes in soil environments is limited and could provide novel knowledge and new ways of monitoring soil health. Electrochemical activities in the soil can be studied by inserting inert electrodes. Once the electrode is polarized to a favorable potential, nearby microorganisms attach to the electrodes and grow as biofilms. Biofilms are a major part of the soil and play critical roles in microbial activity and community dynamics. Our work aims to investigate the electrochemical behavior of healthy and unhealthy soils using chronoamperometry and cyclic voltammetry. We developed a bioelectrochemical soil reactor for electrochemical measurements using healthy and unhealthy soils taken from the Cook Agronomy Farm Long-Term Agroecological Research site; the soils showed similar physical and chemical characteristics, but there was higher plant growth where the healthy soil was taken. Using carbon cloth electrodes installed in these soil reactors, we explored the electrochemical signals in these two soils. First, we measured redox variations by depth and found that reducing conditions were prevalent in healthy soils. Current measurements showed distinct differences between healthy and unhealthy soils. Scanning electron microscopy images showed the presence of microbes attached to the electrode for healthy soil but not for unhealthy soil. Glucose addition stimulated current in both soil types and caused differences in cyclic voltammograms between the two soil types to converge. Our work demonstrates that we can use current as a proxy for microbial metabolic activity to distinguish healthy and unhealthy soil.

12.
Trends Microbiol ; 29(4): 299-308, 2021 04.
Article in English | MEDLINE | ID: mdl-33309525

ABSTRACT

The appeal of using microbial inoculants to mediate plant traits and productivity in managed ecosystems has increased over the past decade, because microbes represent an alternative to fertilizers, pesticides, and direct genetic modification of plants. Using microbes bypasses many societal and environmental concerns because microbial products are considered a more sustainable and benign technology. In our desire to harness the power of plant-microbial symbioses, are we ignoring the possibility of precipitating microbial invasions, potentially setting ourselves up for a microbial Jurassic Park? Here, we outline potential negative consequences of microbial invasions and describe a set of practices (Testing, Regulation, Engineering, and Eradication, TREE) based on the four stages of invasion to prevent microbial inoculants from becoming invasive. We aim to stimulate discussion about best practices to proactively prevent microbial invasions.


Subject(s)
Agricultural Inoculants , Bacteria/metabolism , Ecosystem , Plants/microbiology , Fertilizers , Introduced Species , Symbiosis , United States
13.
FEMS Microbiol Ecol ; 96(12)2020 11 27.
Article in English | MEDLINE | ID: mdl-33038234

ABSTRACT

Cellulosic bioenergy crops, like switchgrass (Panicum virgatum), have potential for growth on lands unsuitable for food production coupled with potential for climate mitigation. Sustainability of these systems lies in identifying conditions that promote high biomass yields on marginal lands under low-input agricultural practices. Associative nitrogen fixation (ANF) is a potentially important nitrogen (N) source for these crops, yet ANF contributions to plant N, especially under fertilizer N addition are unclear. In this study, we assess structure (nifH) and function (ANF) of switchgrass root-associated diazotrophic communities to long-term and short-term N additions using soil from three marginal land sites. ANF rates were variable and often unexpectedly high, sometimes 10× greater than reported in the literature, and did not respond in repeatable ways to long-term or short-term N. We found few impacts of N addition on root-associated diazotrophic community structure or membership. Instead, we found a very consistent root-associated diazotrophic community even though switchgrass seeds were germinated in soil from field sites with distinct diazotrophic communities. Ultimately, this work demonstrates that root-associated diazotrophic communities have the potential to contribute to switchgrass N demands, independent of N addition, and this may be driven by selection of the diazotrophic community by switchgrass roots.


Subject(s)
Nitrogen , Panicum , Fertilizers/analysis , Nitrogen Fixation , Soil Microbiology
14.
Annu Rev Phytopathol ; 58: 55-75, 2020 08 25.
Article in English | MEDLINE | ID: mdl-32600178

ABSTRACT

Plant pathogens are a critical component of the microbiome that exist as populations undergoing ecological and evolutionary processes within their host. Many aspects of virulence rely on social interactions mediated through multiple forms of public goods, including quorum-sensing signals, exoenzymes, and effectors. Virulence and disease progression involve life-history decisions that have social implications with large effects on both host and microbe fitness, such as the timing of key transitions. Considering the molecular basis of sequential stages of plant-pathogen interactions highlights many opportunities for pathogens to cheat, and there is evidence for ample variation in virulence. Case studies reveal systems where cheating has been demonstrated and others where it is likely occurring. Harnessing the social interactions of pathogens, along with leveraging novel sensing and -omics technologies to understand microbial fitness in the field, will enable us to better manage plant microbiomes in the interest of plant health.


Subject(s)
Microbiota , Quorum Sensing , Biological Evolution , Plants , Virulence
15.
Phytopathology ; 110(11): 1756-1758, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32515644

ABSTRACT

Powdery mildew, caused by Podosphaera leucotricha, is an economically important disease of apple and pear trees. A single monoconidial strain (PuE-3) of this biotrophic fungus was used to extract DNA for Illumina sequencing. Data were assembled to form a draft genome of 43.8 Mb consisting of 8,921 contigs, 9,372 predicted genes, and 96.1% of complete benchmarking universal single copy orthologs (BUSCOs). This is the first reported genome sequence of P. leucotricha that will enable studies of the population biology, epidemiology, and fungicide resistance of this pathogen. Furthermore, this resource will be fundamental to uncover the genetic and molecular mechanisms of the apple-powdery mildew interaction, and support future pome fruit breeding efforts.


Subject(s)
Ascomycota , Fungicides, Industrial , Malus , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Malus/genetics , Plant Diseases
16.
FEMS Microbiol Lett ; 366(18)2019 09 01.
Article in English | MEDLINE | ID: mdl-31730203

ABSTRACT

Stabilizing mechanisms in plant-microbe symbioses are critical to maintaining beneficial functions, with two main classes: host sanctions and partner choice. Sanctions are currently presumed to be more effective and widespread, based on the idea that microbes rapidly evolve cheating while retaining signals matching cooperative strains. However, hosts that effectively discriminate among a pool of compatible symbionts would gain a significant fitness advantage. Using the well-characterized legume-rhizobium symbiosis as a model, we evaluate the evidence for partner choice in the context of the growing field of genomics. Empirical studies that rely upon bacteria varying only in nitrogen-fixation ability ignore host-symbiont signaling and frequently conclude that partner choice is not a robust stabilizing mechanism. Here, we argue that partner choice is an overlooked mechanism of mutualism stability and emphasize that plants need not use the microbial services provided a priori to discriminate among suitable partners. Additionally, we present a model that shows that partner choice signaling increases symbiont and host fitness in the absence of sanctions. Finally, we call for a renewed focus on elucidating the signaling mechanisms that are critical to partner choice while further aiming to understand their evolutionary dynamics in nature.


Subject(s)
Biological Coevolution , Fabaceae/microbiology , Microbial Interactions/physiology , Rhizobium/physiology , Symbiosis/physiology , Fabaceae/physiology , Linkage Disequilibrium , Models, Biological , Nitrogen Fixation , Signal Transduction/physiology
18.
Front Plant Sci ; 10: 1316, 2019.
Article in English | MEDLINE | ID: mdl-31749816

ABSTRACT

The costs and benefits that define gain from trade in resource mutualisms depend on resource availability. Optimal partitioning theory predicts that allocation to direct uptake versus trade will be determined by both the relative benefit of the resource acquired through trade and the relative cost of the resource being traded away. While the costs and benefits of carbon:nitrogen exchange in the legume-rhizobia symbiosis have been examined in depth with regards to mineral nitrogen availability, the effects of varying carbon costs are rarely considered. Using a growth chamber experiment, we measured plant growth and symbiosis investment in the model legume Medicago truncatula and its symbiont Ensifer medicae across varying nitrogen and light environments. We demonstrate that plants modulate their allocation to roots and nodules as their return on investment varies according to external nitrogen and carbon availabilities. We find empirical evidence that plant allocation to nodules responds to carbon availability, but that this depends upon the nitrogen environment. In particular, at low nitrogen-where rhizobia provided the majority of nitrogen for plant growth-relative nodule allocation increased when carbon limitation was alleviated with high light levels. Legumes' context-dependent modulation of resource allocation to rhizobia thus prevents this interaction from becoming parasitic even in low-light, high-nitrogen environments where carbon is costly and nitrogen is readily available.

19.
Ecol Evol ; 9(18): 10522-10533, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31632647

ABSTRACT

The Enemy Release Hypothesis posits that invasion of novel habitats can be facilitated by the absence of coevolved herbivores. However, a new environment and interactions with unfamiliar herbivores may impose selection on invading plants for traits that reduce their attractiveness to herbivores or for enhanced defenses compared to native host plants, leading to a pattern similar to enemy release but driven by evolutionary change rather than ecological differences. The Shifting Defense Hypothesis posits that plants in novel habitats will shift from specialized defense mechanisms to defense mechanisms effective against generalist herbivores in the new range. We tested these ideas by comparing herbivore preference and performance of native (Eurasia)- and invasive (New World)-range Medicago polymorpha, using a generalist herbivore, the soybean looper, that co-occurs with M. polymorpha in its New World invaded range. We found that soybean loopers varied in preference and performance depending on host genotype and that overall the herbivore preferred to consume plant genotypes from naïve populations from Eurasia. This potentially suggests that range expansion of M. polymorpha into the New World has led to rapid evolution of a variety of traits that have helped multiple populations become established, including those that may allow invasive populations to resist herbivory. Thus, enemy release in a novel range can occur through rapid evolution by the plant during invasion, as predicted by the Shifting Defense Hypothesis, rather than via historical divergence.

20.
Microbiol Resour Announc ; 8(38)2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31537665

ABSTRACT

Pairing plants with plant growth-promoting bacteria is critical to the future of agriculture. Bradyrhizobium sp. strain USDA 3458 isolated from Vigna unguiculata (cowpea) paired with cowpea genotype IT82E-16 represents a novel combination in arid regions. Here, we report the draft genome sequence of strain USDA 3458.

SELECTION OF CITATIONS
SEARCH DETAIL
...