Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 12(14)2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37514234

ABSTRACT

The article presents data on phylogeny, genome size, and ploidy of species of the genus Kalidium Moq. in the flora of Kazakhstan. Genus Kalidium belongs to the tribe Salicornieae of the subfamily Salicornioideae of the family Chenopodiaceae and unites eight species, the main range of which covers the Iranian-Turanian and Central Asian deserts. There are four species in the flora of Kazakhstan: K. foliatum, K. caspicum, K. schrenkianum, and the recently described K. juniperinum. Populations of species of the genus Kalidium in the saline deserts of Kazakhstan occupy large areas, often forming monodominant communities. Sometimes there is a joint growth of two and very rarely three species of the genus. During the period of fieldwork (2021-2022), populations were identified in which these species grew together with a predominance, in most cases, of K. caspicum. Samples of representatives from 15 populations were collected for research. Selected plant samples were studied by flow cytometry to determine plant ploidy. Sequencing of nrITS and two chloroplast fragments were used to build a phylogenetic tree, including sequences from the NCBI database., A phylogenetic tree of species of the genus Kalidium was compiled, which takes previously published data into consideration. In the valley of the middle reaches of the Syrdarya River, tetraploid populations of K. caspicum were found. A hybrid between K. foliatum and K. caspicum was found in the Ili River valley (Almaty region, Uigur district). To identify phylogenetic processes at the intraspecific level, the SCoT (Start codon targeted) fingerprinting method was used.

2.
Plant Biol (Stuttg) ; 17 Suppl 1: 42-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25115915

ABSTRACT

Lemnaceae, commonly called duckweeds, comprise a diverse group of floating aquatic plants that have previously been classified into 37 species based on morphological and physiological criteria. In addition to their unique evolutionary position among angiosperms and their applications in biomonitoring, the potential of duckweeds as a novel sustainable crop for fuel and feed has recently increased interest in the study of their biodiversity and systematics. However, due to their small size and abbreviated structure, accurate typing of duckweeds based on morphology can be challenging. In the past decade, attempts to employ molecular barcoding techniques for species assignment have produced promising results; however, they have yet to be codified into a simple and quantitative protocol. A study that compiles and compares the barcode sequences within all known species of this family would help to establish the fidelity and limits of this DNA-based approach. In this work, we compared the level of conservation between over 100 strains of duckweed for two intergenic barcode sequences derived from the plastid genome. By using over 300 sequences publicly available in the NCBI database, we determined the utility of each of these two barcodes for duckweed species identification. Through sequencing of these barcodes from additional accessions, 30 of the 37 known species of duckweed could be identified with varying levels of confidence using this approach. From our analyses using this reference dataset, we also confirmed two instances where mis-assignment of species has likely occurred. Potential strategies for further improving the scope of this technology are discussed.


Subject(s)
Araceae/genetics , DNA Barcoding, Taxonomic/methods , Genotyping Techniques/methods , Base Sequence , Bayes Theorem , DNA, Intergenic/genetics , Databases, Genetic , Phylogeny , Reproducibility of Results , Species Specificity
3.
Diabetologia ; 47(4): 676-85, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15298345

ABSTRACT

AIMS/HYPOTHESIS: We studied the impact of the reactive oxygen species hydrogen peroxide (H2O2) and antioxidative enzymes on the pathogenesis of diabetes induced by multiple low doses of streptozotocin (MLD-STZ). METHODS: We isolated the islets of C57BL/6 mice. For ex vivo analyses, mice had been injected with MLD-STZ. For in vitro analyses, islets were incubated with different concentrations of STZ, with either of the two moieties of STZ, methylnitrosourea and D-glucose, with H2O2 or with alloxan. Levels of H2O2 generation were measured by the scopoletin method. We assessed mRNA expression of Cu/Zn and Mn superoxide dismutase, catalase, and glutathione peroxidase (GPX) by semiquantitative polymerase chain reaction. GPX activity was measured spectrophotometrically. In vitro, beta cell function was assayed by measuring basal and D-glucose-stimulated release of immunoreactive insulin using an ELISA kit. RESULTS: Ex vivo, MLD-STZ significantly increased H2O2 generation in male but not in female mice. It also increased GPX activity and mRNA expression of catalase, Cu/Zn and Mn superoxide dismutase, and GPX in female but not in male mice. In vitro, STZ significantly stimulated H2O2 generation in islets of male mice only. In male islets, alloxan increased H202 generation at a highly toxic concentration, but D-glucose and methylnitrosourea did not. Both STZ and H2O2 dose-dependently inhibited the release of immunoreactive insulin after a D-glucose challenge. CONCLUSIONS/INTERPRETATION: The results indicate that H2O2 participates in the pathogenesis of MLD-STZ diabetes in male C57BL/6 mice, which do not up-regulate antioxidative enzymes in islets. Conversely, female mice are protected, probably due to an increment of several enzymes with the potential to detoxify H2O2.


Subject(s)
Antioxidants/metabolism , Diabetes Mellitus, Experimental/metabolism , Hydrogen Peroxide/pharmacology , Islets of Langerhans/metabolism , Oxidants/pharmacology , Animals , Enzyme-Linked Immunosorbent Assay , Female , Glutathione Peroxidase/metabolism , Hydrogen Peroxide/metabolism , Islets of Langerhans/drug effects , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Streptozocin/administration & dosage , Streptozocin/toxicity
4.
Mol Ecol ; 13(9): 2789-95, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15315689

ABSTRACT

Several vegetation belts stretch continuously from Europe to Asia, taiga and steppe being most prominent. Numerous plant species within these belts share a conspicuous distribution area, which is longitudinally contracted or disrupted approximately along longitude 70 degrees E. To date no hypothesis for this intriguing distribution pattern has been put forward. We detected molecular footprints in the contemporary genetic composition in nuclear DNA (ITS1, ITS2) and chloroplast DNA (trnL-trnF spacer region) of the steppe element Clausia aprica (Brassicaceae) providing evidence for a severe longitudinal range split and genetic differentiation east of the Ural Mountains about 1 million years ago caused by Quaternary climatic oscillations. Clausia aprica provides the first phylogeographical analysis on the intraspecific evolution of an Eurasian steppe plant.


Subject(s)
Brassicaceae/genetics , Demography , Genetic Variation , Phylogeny , Asia , Base Sequence , Climate , DNA, Chloroplast/genetics , Europe , Geography , Molecular Sequence Data , Sequence Analysis, DNA
5.
Mol Biol Evol ; 18(7): 1176-88, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11420359

ABSTRACT

We examined the diversity, evolution, and genomic organization of retroelements in a wide range of gymnosperms. In total, 165 fragments of the reverse transcriptase (RT) gene domain were sequenced from PCR products using newly designed primers for gypsy-like retrotransposons and well-known primers for copia-like retrotransposons; representatives of long interspersed nuclear element (LINE) retroposons were also found. Gypsy and copia-like retroelements are a major component of the gymnosperm genome, and in situ hybridization showed that individual element families were widespread across the chromosomes, consistent with dispersion and amplification via an RNA intermediate. Most of the retroelement families were widely distributed among the gymnosperms, including species with wide taxonomic separation from the Northern and Southern Hemispheres. When the gymnosperm sequences were analyzed together with retroelements from other species, the monophyletic origin of plant copia, gypsy, and LINE groups was well supported, with an additional clade including badnaviral and other, probably virus-related, plant sequences as well as animal and fungal gypsy elements. Plant retroelements showed high diversity within the phylogenetic trees of both copia and gypsy RT domains, with, for example, retroelement sequences from Arabidopsis thaliana being present in many supported groupings. No primary branches divided major taxonomic clades such as angiosperms, monocotyledons, gymnosperms, or conifers or (based on smaller samples) ferns, Gnetales, or Sphenopsida (Equisetum), suggesting that much of the existing diversity was present early in plant evolution, or perhaps that horizontal transfer of sequences has occurred. Within the phylogenetic trees for both gypsy and copia, two clearly monophyletic gymnosperm/conifer clades were revealed, providing evidence against recent horizontal transfer. The results put the evolution of the large and relatively conserved genome structure of gymnosperms into the context of the diversity of other groups of plants.


Subject(s)
Cycadopsida/genetics , Retroelements , Animals , Base Sequence , Cycadopsida/classification , Cycadopsida/enzymology , DNA Primers/genetics , Evolution, Molecular , Genes, Plant , Genetic Variation , In Situ Hybridization, Fluorescence , Long Interspersed Nucleotide Elements , Molecular Sequence Data , Phylogeny , RNA-Directed DNA Polymerase/genetics
6.
Mol Phylogenet Evol ; 17(2): 209-18, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11083935

ABSTRACT

Phylogenetic relationships between Allium and the monotypic Himalayan genus Milula were analyzed using sequences of the nuclear ribosomal DNA internal transcribed spacer (ITS) region and of the intergenic spacers from the chloroplast trnD(GUC)-trnT(GGU) region. Both marker systems unambiguously placed Milula spicata within Allium subgenus Rhizirideum, close to A. cyathophorum. Morphologically, the main difference between Allium and Milula is the conspicuous spicate inflorescence of Milula vs the mostly capitate or umbellate inflorescences in Allium. Anatomical investigations of leaf characters support a close relationship of Milula with A. cyathophorum and A. mairei, whereas root characters are distinctive from other species of section Cyathophora. To maintain Allium as monophyletic, Milula has been included as A. spicatum in Allium subgenus Rhizirideum.


Subject(s)
Allium/genetics , Evolution, Molecular , Liliaceae/genetics , Allium/classification , DNA, Chloroplast/chemistry , DNA, Chloroplast/genetics , DNA, Plant/chemistry , DNA, Plant/genetics , DNA, Ribosomal Spacer/genetics , Liliaceae/anatomy & histology , Liliaceae/classification , Molecular Sequence Data , Phylogeny , Plant Leaves/anatomy & histology , Plant Roots/anatomy & histology , RNA, Ribosomal, 5.8S/genetics , RNA, Transfer/genetics , Sequence Analysis, DNA
7.
Am J Bot ; 86(4): 554-62, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10205076

ABSTRACT

The origin of the crop species Allium fistulosum (bunching onion) and its relation to its wild relative A. altaicum were surveyed with a restriction fragment length polymorphism (RFLP) analysis of five noncoding cpDNA regions and with a random amplified polymorhic DNA (RAPD) analysis of nuclear DNA. Sixteen accessions of A. altaicum, 14 accessions of A. fistulosum, representing the morphological variability of the species, and five additional outgroup species from Allium section Cepa were included in this study. The RFLP analysis detected 14 phylogenetically informative character transformations, whereas RAPD revealed 126 polymorphic fragments. Generalized parsimony, neighbor-joining analysis of genetic distances, and a principal co-ordinate analysis were able to distinguish the two species, but only RAPD data allowed clarification of the interrelationship of the two taxa. The main results of this investigation were: (1) A. fistulosum is of monophyletic origin, and (2) A. fistulosum originated from an A. altaicum progenitor, making A. altaicum a paraphyletic species. Compared with A. altaicum the cultivated accessions of the bunching onion show less genetic variability, a phenomenon that often occurs in crop species due to the severe genetic bottleneck of domestication. Allium altaicum and A. fistulosum easily hybridize when grown together, and most garden-grown material is of recent hybrid origin.

SELECTION OF CITATIONS
SEARCH DETAIL
...