ABSTRACT
The relationship of cerebral blood flow to acute changes in arterial carbon dioxide and mean arterial blood pressure (MABP) was determined during the first day of life in 19 severely asphyxiated term infants supported by mechanical ventilation. For comparison, 12 infants without perinatal asphyxia were also investigated. Global cerebral blood flow (CBF infinity) was determined by xenon 133 clearance two or three times within approximately 2 hours. During the cerebral blood flow measurement, the amplitude-integrated electroencephalogram and visual-evoked potential were recorded. Changes in arterial carbon dioxide pressure followed adjustments of the ventilator settings, whereas MABP fluctuated spontaneously. Arterial oxygen pressure and blood glucose concentration were in the normal range. Five of the asphyxiated infants had isoelectric electroencephalograms and died subsequently with severe brain damage. They had a high CBF infinity (mean 30.6 ml/100 gm/min) and abolished carbon dioxide and MABP reactivity. Lower CBF infinity (mean 14.7 ml/100 gm/min) and abolished MABP reactivity were found in another five asphyxiated infants with burst-suppression electroencephalograms in whom computed tomographic or clinical signs of brain lesions developed. The carbon dioxide reactivity was preserved in these infants. In the remaining nine asphyxiated infants without signs of central nervous system abnormality, carbon dioxide and MABP reactivity were preserved, as was also the case in the control group. We conclude that abolished autoregulation is associated with cerebral damage in asphyxiated infants and that the combination of isoelectric electroencephalograms and cerebral hyperperfusion is an early indicator of very severe brain damage.
Subject(s)
Asphyxia Neonatorum/complications , Brain Damage, Chronic/etiology , Cerebrovascular Circulation/physiology , Vasomotor System/physiopathology , Asphyxia Neonatorum/blood , Asphyxia Neonatorum/physiopathology , Blood Pressure/physiology , Brain Damage, Chronic/physiopathology , Carbon Dioxide/blood , Electroencephalography , Evoked Potentials, Visual/physiology , Gestational Age , Humans , Infant, Newborn , Oxygen/blood , Xenon RadioisotopesABSTRACT
The reaction of cerebral blood flow to acute changes in arterial carbon dioxide pressure (PaCO2) and mean arterial blood pressure was determined in 57 preterm infants supported by mechanical ventilation (mean gestational age 30.1 weeks) during the first 48 hours of life. All infants had normal brain sonograms at the time of the investigation. In each infant, global cerebral blood flow was determined by xenon-133 clearance two to five times within a few hours at different levels of PaCO2. Changes in PaCO2 followed adjustments of the ventilator settings. Arterial oxygen pressure was intended to be kept constant, and mean arterial blood pressure fluctuated spontaneously between measurements. The data were analyzed by stepwise multiple regression, with changes in global cerebral blood flow, PaCO2, mean arterial blood pressure, and postnatal age or intracranial hemorrhage used as variables. In infants with persistently normal brain sonograms, the global cerebral blood flow-carbon dioxide reactivity was markedly lower during the first day of life (mean 11.2% to 11.8%/kPa PaCO2) compared with the second day of life (mean 32.6/kPa PaCO2), and pressure-flow autoregulation was preserved. Similarly, global cerebral blood flow-carbon dioxide reactivity and pressure-flow autoregulation were present in infants in whom mild intracranial hemorrhage developed after the study. In contrast, global cerebral blood flow reactivity to changes in PaCO2 and mean arterial blood pressure was absent in infants in whom ultrasonographic signs of severe intracranial hemorrhage subsequently developed. These infants also had about 20% lower global cerebral blood flow before hemorrhage, in comparison with infants whose sonograms were normal, a finding that suggests functional disturbances of cerebral blood flow regulation. Several perinatal factors were tested, but only birth after abruptio placentae was related to subsequent periventricular hemorrhage (p = 0.037).
Subject(s)
Cerebral Hemorrhage/physiopathology , Cerebrovascular Circulation , Respiration, Artificial , Age Factors , Blood Gas Monitoring, Transcutaneous , Blood Pressure , Carbon Dioxide/blood , Cerebral Hemorrhage/blood , Humans , Infant, Newborn , Oxygen/blood , Respiratory Distress Syndrome, Newborn/blood , Respiratory Distress Syndrome, Newborn/physiopathology , Respiratory Distress Syndrome, Newborn/therapy , Xenon RadioisotopesABSTRACT
Two techniques of Doppler ultrasound examination, continuous-wave and range-gated, applied to the anterior cerebral artery and to the internal carotid artery, were compared with 133xenon clearance after intravenous injection. Thirty-two sets of measurements were obtained in 16 newborn infants. The pulsatility index, the mean flow velocity, and the end-diastolic flow velocity were read from the Doppler recordings. Mean cerebral blood flow was estimated from the 133Xe clearance curves. The correlation coefficients between the Doppler and the 133Xe measurements ranged from 0.41 to 0.82. In the subset of 16 first measurements in each infant, there were no statistically significant differences between the correlation coefficients of the various Doppler ultrasound variables, but the correlation coefficients were consistently lower for the pulsatility index than for mean flow velocity or end-diastolic flow velocity, and they were consistently higher for the range-gated than for the continuous-wave Doppler technique.
Subject(s)
Cerebral Hemorrhage/diagnosis , Cerebrovascular Circulation , Ultrasonography , Xenon Radioisotopes , Blood Flow Velocity , Diastole , Humans , Infant, NewbornABSTRACT
Cerebral blood flow was measured, using the 133Xe clearance technique, a few hours after birth in 19 infants with varying degrees of respiratory distress syndrome. Ten of these infants had had asphyxia at birth. The least affected infants with normotension (systolic blood pressure 60 to 65 mm Hg) had CBF values of about 40 ml/100 gm/minute. Hypotensive infants with asphyxia at birth or RDS or both had values for CBF of about 20 ml/100 gm/minute, or less. CBF was strongly correlated with the arterial blood pressure, showing a linear relationship that was identical in infants with asphyxia at birth and infants with RDS only. CBF varied considerably with spontaneous variations in blood pressure, suggesting that autoregulation was lacking. This finding may explain why distressed premature infants are prone to develop massive capillary bleeding in the germinal layer with penetration to the ventricles.