Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
NPJ Microgravity ; 10(1): 50, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38693246

ABSTRACT

Periodically, the European Space Agency (ESA) updates scientific roadmaps in consultation with the scientific community. The ESA SciSpacE Science Community White Paper (SSCWP) 9, "Biology in Space and Analogue Environments", focusses in 5 main topic areas, aiming to address key community-identified knowledge gaps in Space Biology. Here we present one of the identified topic areas, which is also an unanswered question of life science research in Space: "How to Obtain an Integrated Picture of the Molecular Networks Involved in Adaptation to Microgravity in Different Biological Systems?" The manuscript reports the main gaps of knowledge which have been identified by the community in the above topic area as well as the approach the community indicates to address the gaps not yet bridged. Moreover, the relevance that these research activities might have for the space exploration programs and also for application in industrial and technological fields on Earth is briefly discussed.

2.
NPJ Microgravity ; 10(1): 16, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341423

ABSTRACT

Progress in mechanobiology allowed us to better understand the important role of mechanical forces in the regulation of biological processes. Space research in the field of life sciences clearly showed that gravity plays a crucial role in biological processes. The space environment offers the unique opportunity to carry out experiments without gravity, helping us not only to understand the effects of gravitational alterations on biological systems but also the mechanisms underlying mechanoperception and cell/tissue response to mechanical and gravitational stresses. Despite the progress made so far, for future space exploration programs it is necessary to increase our knowledge on the mechanotransduction processes as well as on the molecular mechanisms underlying microgravity-induced cell and tissue alterations. This white paper reports the suggestions and recommendations of the SciSpacE Science Community for the elaboration of the section of the European Space Agency roadmap "Biology in Space and Analogue Environments" focusing on "How are cells and tissues influenced by gravity and what are the gravity perception mechanisms?" The knowledge gaps that prevent the Science Community from fully answering this question and the activities proposed to fill them are discussed.

3.
Immun Ageing ; 20(1): 64, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37986079

ABSTRACT

BACKGROUND: The spaceflight environment is an extreme environment that affects the immune system of approximately 50% of astronauts. With planned long-duration missions, such as the deployment of the Lunar Gateway and possible interplanetary missions, it is mandatory to determine how all components of the immune system are affected, which will allow the establishment of countermeasures to preserve astronaut health. However, despite being an important component of the immune system, antibody-mediated humoral immunity has rarely been investigated in the context of the effects of the space environment. It has previously been demonstrated that 30 days aboard the BION-M1 satellite and 21 days of hindlimb unloading (HU), a model classically used to mimic the effects of microgravity, decrease murine B lymphopoiesis. Furthermore, modifications in B lymphopoiesis reported in young mice subjected to 21 days of HU were shown to be similar to those observed in aged mice (18-22 months). Since the primary antibody repertoire composed of IgM is created by V(D) J recombination during B lymphopoiesis, the objective of this study was to assess the degree of similarity between changes in the bone marrow IgM repertoire and in the V(D)J recombination process in 2.5-month-old mice subjected to 21 days of HU and aged (18 months) mice. RESULTS: We found that in 21 days, HU induced changes in the IgM repertoire that were approximately 3-fold less than those in aged mice, which is a rapid effect. Bone remodeling and epigenetics likely mediate these changes. Indeed, we previously demonstrated a significant decrease in tibial morphometric parameters from day 6 of HU and a progressive reduction in these parameters until day 21 of HU, and it has been shown that age and microgravity induce epigenetic changes. CONCLUSION: These data reveal novel immune changes that are akin to advanced aging and underline the importance of studying the effects of spaceflight on antibody-mediated humoral immunity.

4.
NPJ Microgravity ; 9(1): 84, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37865644

ABSTRACT

The present white paper concerns the indications and recommendations of the SciSpacE Science Community to make progress in filling the gaps of knowledge that prevent us from answering the question: "How Do Gravity Alterations Affect Animal and Human Systems at a Cellular/Tissue Level?" This is one of the five major scientific issues of the ESA roadmap "Biology in Space and Analogue Environments". Despite the many studies conducted so far on spaceflight adaptation mechanisms and related pathophysiological alterations observed in astronauts, we are not yet able to elaborate a synthetic integrated model of the many changes occurring at different system and functional levels. Consequently, it is difficult to develop credible models for predicting long-term consequences of human adaptation to the space environment, as well as to implement medical support plans for long-term missions and a strategy for preventing the possible health risks due to prolonged exposure to spaceflight beyond the low Earth orbit (LEO). The research activities suggested by the scientific community have the aim to overcome these problems by striving to connect biological and physiological aspects in a more holistic view of space adaptation effects.

5.
Molecules ; 28(18)2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37764307

ABSTRACT

Patients suffering from inflammatory chronic diseases are classically treated with anti-inflammatory drugs but unfortunately are highly susceptible to becoming resistant to their treatment. Finding new drugs is therefore crucial and urgent and research on endophytic fungi is a promising way forward. Endophytic fungi are microorganisms that colonize healthy plants and live within their intercellular tissues. They are able to produce a large variety of secondary metabolites while allowing their host to stay healthy. A number of these molecules are endowed with antioxidant or antimicrobial as well as cytotoxic properties, making them very interesting/promising in the field of human therapy. The aim of our study was to investigate whether extracts from five endophytic fungi isolated from plants are endowed with anti-inflammatory activity. Extracts of the endophytic fungi Alternaria alternata from Calotropis procera leaves and Aspergillus terreus from Trigonella foenum-graecum seeds were able to counteract the lipopolysaccharide (LPS) pro-inflammatory effect on THP-1 cells differentiated into macrophages. Moreover, they were able to induce an anti-inflammatory state, rendering them less sensitive to the LPS pro-inflammatory stimulus. Taken together, these results show that these both endophytic fungi could be interesting alternatives to conventional anti-inflammatory drugs. To gain more detailed knowledge of their chemical richness, phytochemical analysis of the ethyl acetate extracts of the five endophytic fungi studied was performed using HPTLC, GC-MS and LC-MS with the Global Natural Products Social (GNPS) platform and the MolNetEnhancer tool. A large family of metabolites (carboxylic acids and derivatives, steroid derivatives, alkaloids, hydroxyanthraquinones, valerolactones and perylenequinones) were detected. The purification of endophytic fungus extract of Alternaria alternate, which diminished TNF-α production of 66% at 20 µg/mL, incubated one hour before LPS addition, led to the characterization of eight pure compounds. These molecules are altertoxins I, II, III, tricycloalternarenes 3a, 1b, 2b, anthranilic acid, and o-acetamidobenzoic acid. In the future, all these pure compounds will be evaluated for their anti-inflammatory activity, while altertoxin II has been shown in the literature as the most active mycotoxin in terms of anti-inflammatory activity.

6.
NPJ Microgravity ; 9(1): 51, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37380641

ABSTRACT

Although we have sent humans into space for more than 50 years, crucial questions regarding immune response in space conditions remain unanswered. There are many complex interactions between the immune system and other physiological systems in the human body. This makes it difficult to study the combined long-term effects of space stressors such as radiation and microgravity. In particular, exposure to microgravity and cosmic radiation may produce changes in the performance of the immune system at the cellular and molecular levels and in the major physiological systems of the body. Consequently, abnormal immune responses induced in the space environment may have serious health consequences, especially in future long-term space missions. In particular, radiation-induced immune effects pose significant health challenges for long-duration space exploration missions with potential risks to reduce the organism's ability to respond to injuries, infections, and vaccines, and predispose astronauts to the onset of chronic diseases (e.g., immunosuppression, cardiovascular and metabolic diseases, gut dysbiosis). Other deleterious effects encountered by radiation may include cancer and premature aging, induced by dysregulated redox and metabolic processes, microbiota, immune cell function, endotoxin, and pro-inflammatory signal production1,2. In this review, we summarize and highlight the current understanding of the effects of microgravity and radiation on the immune system and discuss knowledge gaps that future studies should address.

7.
Molecules ; 28(4)2023 Feb 06.
Article in English | MEDLINE | ID: mdl-36838541

ABSTRACT

Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.


Subject(s)
Lepidoptera , Moths , Solanum lycopersicum , Animals
8.
Int J Mol Sci ; 24(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36675236

ABSTRACT

During spaceflights, astronauts face different forms of stress (e.g., socio-environmental and gravity stresses) that impact physiological functions and particularly the immune system. In this context, little is known about the effect of such stress on dendritic cells (DCs). First, we showed that hypergravity, but not chronic ultra-mild stress, a socio-environmental stress, induced a less mature phenotype characterized by a decreased expression of MHCII and co-stimulatory molecules. Next, using the random positioning machine (RPM), we studied the direct effects of simulated microgravity on either splenic DCs or Flt-3L-differentiated bone marrow dendritic cells (BMDCs). Simulated microgravity was found to reduce the BM-conventional DC (cDC) and splenic cDC activation/maturation phenotype. Consistent with this, BMDCs displayed a decreased production of pro-inflammatory cytokines when exposed to microgravity compared to the normogravity condition. The induction of a more immature phenotype in microgravity than in control DCs correlated with an alteration of the NFκB signaling pathway. Since the DC phenotype is closely linked to their function, we studied the effects of microgravity on DCs and found that microgravity impaired their ability to induce naïve CD4 T cell survival, proliferation, and polarization. Thus, a deregulation of DC function is likely to induce immune deregulation, which could explain the reduced efficiency of astronauts' immune response.


Subject(s)
NF-kappa B , Weightlessness , Animals , Mice , NF-kappa B/metabolism , Dendritic Cells , Signal Transduction , Phenotype , Cell Differentiation
9.
Microorganisms ; 10(11)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36422340

ABSTRACT

Fusarium is a phytopathogenic fungus involved in human pathology and is present in space stations. It is essential to understand the effects of microgravity on the physiology of this fungus to determine the potential risks to the health of crew members and to propose the necessary countermeasures. This study aimed to determine changes in the physiological parameters of the Fusarium solani species complex under simulated microgravity generated using a random positioning machine (RPM) and phenotypic approaches. We observed increased growth, spore production, and germination while biofilm production was reduced under RPM exposure. These in vitro data show the importance of further studying this fungus as it has been repeatedly demonstrated that microgravity weakens the immune system of astronauts.

10.
Front Immunol ; 13: 952928, 2022.
Article in English | MEDLINE | ID: mdl-36311805

ABSTRACT

The identification of safe and easily-determined-inflight biomarkers to monitor the immune system of astronauts is mandatory to ensure their well-being and the success of the missions. In this report, we evaluated the relevance of two biomarkers whose determination could be easily implemented in a spacecraft in the near future by using bedridden volunteers as a ground-based model of the microgravity of spaceflight. Our data confirm the relevance of the neutrophil to lymphocyte ratio (NLR) and suggest platelet to lymphocyte ratio (PLR) monitoring to assess long-lasting immune diseases. We recommend coupling these ratios to other biomarkers, such as the quantification of cytokines and viral load measurements, to efficiently detect immune dysfunction, determine when countermeasures should be applied to promote immune recovery, prevent the development of disease, and track responses to treatment.


Subject(s)
Astronauts , Neutrophils , Humans , Bed Rest/adverse effects , Head-Down Tilt , Retrospective Studies , Lymphocytes , Biomarkers
11.
Int J Mol Sci ; 23(13)2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35806138

ABSTRACT

Gravity changes are major stressors encountered during spaceflight that affect the immune system. We previously evidenced that hypergravity exposure during gestation affects the TCRß repertoire of newborn pups. To identify the mechanisms underlying this observation, we studied post-translational histone modifications. We first showed that among the four studied post-translational histone H3 modifications, only lysine 27 trimethylation (H3K27me3) is downregulated in the thymus of mice exposed to 2× g for 21 days. We then asked whether the TCRß locus chromatin structure is altered by hypergravity exposure. ChIP studies performed on four Vß segments of the murine double-negative SCIET27 thymic cell line, which corresponds to the last maturation stage before V(D)J recombination, revealed increases in H3K27me3 after 2× g exposure. Finally, we evaluated the implication for the EZH2 methyltransferase in the regulation of the H3K27me3 level at these Vß segments by treating SCIET27 cells with the GSK126-specific inhibitor. These experiments showed that the downregulation of H3K27me3 contributes to the regulation of the Vß germline transcript expression that precedes V(D)J recombination. These data show that modifications of H3K27me3 at the TCRß locus likely contribute to an explanation of why the TCR repertoire is affected by gravity changes and imply, for the first time, EZH2 in the regulation of the TCRß locus chromatin structure.


Subject(s)
Histones , Hypergravity , Animals , Chromatin/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Histones/genetics , Histones/metabolism , Lysine/metabolism , Mice , Thymocytes/metabolism
12.
J Fungi (Basel) ; 8(5)2022 May 20.
Article in English | MEDLINE | ID: mdl-35628788

ABSTRACT

Members of Fusarium solani species complex (FSSC) are cosmopolitan filamentous fungi responsible for invasive fungal infections in immunocompromised patients. Despite the treatment recommendations, many strains show reduced sensitivity to voriconazole. The objective of this work was to investigate the potential relationship between azole susceptibility and mutations in CYP51 protein sequences. Minimal inhibitory concentrations (MICs) for azole antifungals have been determined using the CLSI (Clinical and Laboratory Standards Institute) microdilution method on a panel of clinical and environmental strains. CYP51A, CYP51B and CYP51C genes for each strain have been sequenced using the Sanger method. Amino acid substitutions described in multiple azole-resistant Aspergillus fumigatus (mtrAf) strains have been sought and compared with other Fusarium complexes' strains. Our results show that FSSC exhibit point mutations similar to those described in mtrAf. Protein sequence alignments of CYP51A, CYP51B and CYP51C have highlighted different profiles based on sequence similarity. A link between voriconazole MICs and protein sequences was observed, suggesting that these mutations could be an explanation for the intrinsic azole resistance in the genus Fusarium. Thus, this innovative approach provided clues to understand low azole susceptibility in FSSC and may contribute to improving the treatment of FSSC infection.

13.
Sci Rep ; 12(1): 3655, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35256668

ABSTRACT

EZH2 plays an essential role at the ß-selection checkpoint of T lymphopoiesis by regulating histone H3 lysine 27 trimethylation (H3K27me3) via its canonical mode of action. Increasing data suggest that EZH2 could also regulate other cellular functions, such as cytoskeletal reorganization, via its noncanonical pathway. Consequently, we investigated whether the EZH2 noncanonical pathway could be involved in early T-cell maturation, which requires cell polarization. We observed that EZH2 localization is tightly regulated during the early stages of T-cell development and that EZH2 relocalizes in the nucleus of double-negative thymocytes enduring TCRß recombination and ß-selection processes. Furthermore, we observed that EZH2 and EED, but not Suz12, colocalize with the microtubule organization center (MTOC), which might prevent its inappropriate polarization in double negative cells. In accordance with these results, we evidenced the existence of direct or indirect interaction between EED and α-tubulin. Taken together, these results suggest that the EZH2 noncanonical pathway, in association with EED, is involved in the early stages of T-cell maturation.


Subject(s)
Lymphopoiesis , Thymocytes , Cell Differentiation , Cell Nucleus/metabolism , Enhancer of Zeste Homolog 2 Protein/metabolism , Microtubules/metabolism , Thymocytes/metabolism
14.
Crit Care Med ; 50(9): e707-e718, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35234431

ABSTRACT

OBJECTIVES: Although cardiovascular benefits of ß 1 -adrenergic receptor blockade have been described in sepsis, little is known about its impact on the adaptive immune response, specifically CD4 T cells. Herein, we study the effects of ß 1 -adrenergic receptor modulation on CD4 T-cell function in a murine model of sepsis. DESIGN: Experimental study. SETTING: University laboratory. SUBJECTS: C57BL/6 mice. INTERVENTIONS: High-grade sepsis was induced by cecal ligation and puncture in wild-type mice (ß 1+/+ ) with or without esmolol (a selective ß 1 -adrenergic receptor blocker) or in ß 1 -adrenergic receptor knockout mice (ß 1-/- ). At 18 hours after surgery, echocardiography was performed with blood and spleen collected to analyze lymphocyte function. MEASUREMENTS AND MAIN RESULTS: At 18 hours, ß 1+/+ cecal ligation and puncture mice exhibited characteristics of high-grade sepsis and three surrogate markers of immunosuppression, namely decreased splenic CD4 T cells, reduced CD4 T-cell proliferation, and increased regulatory T lymphocyte cell proportions. Pharmacologic and genetic ß 1 -adrenergic receptor blockade reversed the impact of sepsis on CD4 T and regulatory T lymphocyte proportions and maintained CD4 T-cell proliferative capacity. ß 1 -adrenergic receptor blocked cecal ligation and puncture mice also exhibited a global decrease in both pro- and anti-inflammatory mediators and improved in vivo cardiovascular efficiency with maintained cardiac power index despite the expected decrease in heart rate. CONCLUSIONS: ß 1 -adrenergic receptor activation enhances regulatory T lymphocyte inhibitory function and thus contributes to sepsis-induced immunosuppression. This can be attenuated by ß 1 -adrenergic receptor blockade, suggesting a potential immunoregulatory role for this therapy in the management of sepsis.


Subject(s)
Sepsis , T-Lymphocytes, Regulatory , Adrenergic beta-1 Receptor Antagonists/pharmacology , Animals , Disease Models, Animal , Humans , Immunosuppression Therapy , Mice , Mice, Inbred C57BL , Sepsis/drug therapy
15.
Front Immunol ; 13: 830662, 2022.
Article in English | MEDLINE | ID: mdl-35251019

ABSTRACT

Alterations of the immune system could seriously impair the ability to combat infections during future long-duration space missions. However, little is known about the effects of spaceflight on the B-cell compartment. Given the limited access to astronaut samples, we addressed this question using blood samples collected from 20 healthy male volunteers subjected to long-duration bed rest, an Earth-based analog of spaceflight. Hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, four B-cell subsets, immunoglobulin isotypes, six cytokines involved in inflammation, cortisone and cortisol were quantified at five time points. Tibia microarchitecture was also studied. Moreover, we investigated the efficiency of antioxidant supplementation with a cocktail including polyphenols, omega 3, vitamin E and selenium. Our results show that circulating hematopoietic progenitors, white blood cells, total lymphocytes and B-cells, and B-cell subsets were not affected by bed rest. Cytokine quantification suggested a lower systemic inflammatory status, supported by an increase in serum cortisone, during bed rest. These data confirm the in vivo hormonal dysregulation of immunity observed in astronauts and show that bed rest does not alter B-cell homeostasis. This lack of an impact of long-term bed rest on B-cell homeostasis can, at least partially, be explained by limited bone remodeling. None of the evaluated parameters were affected by the administration of the antioxidant supplement. The non-effectiveness of the supplement may be because the diet provided to the non-supplemented and supplemented volunteers already contained sufficient antioxidants. Given the limitations of this model, further studies will be required to determine whether B-cell homeostasis is affected, especially during future deep-space exploration missions that will be of unprecedented durations.


Subject(s)
Bed Rest , Cortisone , Antioxidants , Bed Rest/adverse effects , Dietary Supplements , Head-Down Tilt/physiology , Homeostasis , Humans , Male
16.
Molecules ; 26(19)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34641397

ABSTRACT

In this study, phenolic compounds from an aqueous protein by-product from rapeseed meal (RSM) were identified by HPLC-DAD and HPLC-ESI-MS, including sinapine, sinapic acid, sinapoyl glucose, and 1,2-di-sinapoyl gentibiose. The main phenolic compound in this by-product was sinapine. We also performed acid hydrolysis to convert sinapine, and sinapic acid derivatives present in the permeate, to sinapic acid. The adsorption of phenolic compounds was investigated using five macroporous resins, including XAD4, XAD7, XAD16, XAD1180, and HP20. Among them, XAD16 showed the highest total phenolic contents adsorption capacities. The adsorption behavior of phenolic compounds was described by pseudo-second-order and Langmuir models. Moreover, thermodynamics tests demonstrated that the adsorption process of phenolic compounds was exothermic and spontaneous. The highest desorption ratio was obtained with 30% (v/v) and 70% (v/v) ethanol for sinapine and sinapic acid, respectively, with a desorption ratio of 63.19 ± 0.03% and 94.68 ± 0.013%. DPPH and ABTS tests revealed that the antioxidant activity of the hydrolyzed fraction was higher than the non-hydrolyzed fraction and higher than the one of vitamin C. Antioxidant tests demonstrated that these phenolic compounds could be used as natural antioxidants, which can be applied in the food industry.


Subject(s)
Antioxidants/pharmacology , Brassica napus/chemistry , Dietary Proteins/isolation & purification , Phenols/pharmacology , Plant Extracts/pharmacology , Plant Proteins/isolation & purification , Resins, Plant/chemistry , Food Handling
17.
J Med Microbiol ; 70(9)2021 Sep.
Article in English | MEDLINE | ID: mdl-34491156

ABSTRACT

Introduction. The increase of invasive fungal infections (IFIs) and associated treatment failure in populations at risk is driving us to look for new treatments.Hypothesis. The CIN-102 compound, derived from cinnamon essential oil, could be a new antifungal class with an activity, in particular, on strains resistant to current antifungals but also on biofilms, a factor of virulence and resistance of fungi.Aim. The aim of this study is to show the activity of CIN-102 on various strains resistant to current antifungals, on the biofilm and to determine the possibility of resistance induced with this compound.Methodology. We studied the MIC of CIN-102 and of current antifungals (voriconazole and amphotericin B) using CLSI techniques against eight different strains of three genera of filamentous fungi involved in IFIs and having resistance phenotypes to current antifungals. We also determined their effects on biofilm formation, and the induced resistance by voriconazole (VRC) and CIN-102.Results. MIC values determined for CIN-102 were between 62.5 and 250 µg ml-1. We demonstrated the antifungal effect of CIN-102 on biofilm, and more particularly on its formation, with 100 % inhibition achieved for most of the strains. CIN-102 at a sub-inhibitory concentration in the medium did not induce resistance in our strains, even after 30 generations.Conclusions. In this study we show that CIN-102 is effective against resistant filamentous fungi and against biofilm formation. In addition, our strains did not acquire a resistance phenotype against CIN-102 over time, unlike with VRC. CIN-102 is therefore an interesting candidate for the treatment of IFIs, including in cases of therapeutic failure linked to resistance, although further studies on its efficacy, safety and mechanism of action are needed.


Subject(s)
Antifungal Agents/pharmacology , Benzoates/pharmacology , Biofilms/drug effects , Cinnamates/pharmacology , Fungi/drug effects , Mycoses , Terpenes/pharmacology , Amphotericin B/pharmacology , Drug Combinations , Humans , Microbial Sensitivity Tests , Mycoses/drug therapy , Mycoses/microbiology , Voriconazole/pharmacology
18.
Microorganisms ; 9(8)2021 Jul 27.
Article in English | MEDLINE | ID: mdl-34442682

ABSTRACT

The gut microbiota is a complex and dynamic ecosystem whose balance and homeostasis are essential to the host's well-being and whose composition can be critically affected by various factors, including host stress. Parabacteroides distasonis causes well-known beneficial roles for its host, but is negatively impacted by stress. However, the mechanisms explaining its maintenance in the gut have not yet been explored, in particular its capacities to adhere onto (bio)surfaces, form biofilms and the way its physicochemical surface properties are affected by stressing conditions. In this paper, we reported adhesion and biofilm formation capacities of 14 unrelated strains of P. distasonis using a steam-based washing procedure, and the electrokinetic features of its surface. Results evidenced an important inter-strain variability for all experiments including the response to stress hormones. In fact, stress-induced molecules significantly impact P. distasonis adhesion and biofilm formation capacities in 35% and 23% of assays, respectively. This study not only provides basic data on the adhesion and biofilm formation capacities of P. distasonis to abiotic substrates but also paves the way for further research on how stress-molecules could be implicated in P. distasonis maintenance within the gut microbiota, which is a prerequisite for designing efficient solutions to optimize its survival within gut environment.

19.
J Glob Antimicrob Resist ; 25: 171-180, 2021 06.
Article in English | MEDLINE | ID: mdl-33798742

ABSTRACT

OBJECTIVES: Today, the increase of invasive fungal infections and the emergence of resistant strains are observed in medical practice. New antifungals are expected, and the plant world offers a panel of potentially active molecules. CIN-102 is a mixture of seven different compounds of plant origin developed from the formulation of cinnamon essential oil. METHODS: The in vitro activity of CIN-102 was characterised against Aspergillus spp., Fusarium spp. and Scedosporium spp. by studying the minimum inhibitory concentration (MIC), inoculum effect, germination inhibition, fungal growth, post-antifungal effect (PAFE) and synergy. RESULTS: MICs determined for the three genera followed a unimodal distribution and their mean values ranged from 62-250 µg/mL. CIN-102 demonstrated an inoculum effect similar to voriconazole and amphotericin B, 100% inhibition of spore germination and a PAFE. CONCLUSION: CIN-102 has significant activity against filamentous fungi involved in human pathologies and should be further explored as a potential new treatment. Other studies regarding its mechanisms of action as well as animal investigations are awaited.


Subject(s)
Antifungal Agents , Fungi , Amphotericin B , Antifungal Agents/pharmacology , Benzoates , Cinnamates , Drug Combinations , Humans , Terpenes
20.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33803957

ABSTRACT

Using rotors to expose animals to different levels of hypergravity is an efficient means of understanding how altered gravity affects physiological functions, interactions between physiological systems and animal development. Furthermore, rotors can be used to prepare space experiments, e.g., conducting hypergravity experiments to demonstrate the feasibility of a study before its implementation and to complement inflight experiments by comparing the effects of micro- and hypergravity. In this paper, we present a new platform called the Gravitational Experimental Platform for Animal Models (GEPAM), which has been part of European Space Agency (ESA)'s portfolio of ground-based facilities since 2020, to study the effects of altered gravity on aquatic animal models (amphibian embryos/tadpoles) and mice. This platform comprises rotors for hypergravity exposure (three aquatic rotors and one rodent rotor) and models to simulate microgravity (cages for mouse hindlimb unloading and a random positioning machine (RPM)). Four species of amphibians can be used at present. All murine strains can be used and are maintained in a specific pathogen-free area. This platform is surrounded by numerous facilities for sample preparation and analysis using state-of-the-art techniques. Finally, we illustrate how GEPAM can contribute to the understanding of molecular and cellular mechanisms and the identification of countermeasures.


Subject(s)
Hypergravity/adverse effects , Rodentia/physiology , Space Flight , Weightlessness/adverse effects , Animals , Humans , Larva/pathogenicity , Larva/radiation effects , Mice , Models, Animal , Xenopus laevis/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...