Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Histochem ; 59(4): 2532, 2015 Nov 03.
Article in English | MEDLINE | ID: mdl-26708177

ABSTRACT

Heat-induced epitope retrieval (HIER) is widely used for immunohistochemistry on formalin fixed paraffin-embedded tissue and includes temperatures well above the melting point of paraffin. We therefore tested whether traditional xylene-based removal of paraffin is required on sections from paraffin-embedded tissue, when HIER is performed by vigorous boiling in 10 mM Tris/0.5 mM EGTA-buffer (pH=9). Immunohistochemical results using HIER with or without prior dewaxing in xylene were evaluated using 7 primary antibodies targeting proteins located in the cytosol, intracellular vesicles and plasma membrane. No effect of omitting prior dewaxing was observed on staining pattern. Semiquantitative analysis did not show HIER to influence the intensity of labelling consistently. Consequently, quantification of immune labelling intensity using fluorescent secondary antibodies was performed at 5 dilutions of primary antibody with and without prior dewaxing in xylene. No effect of omitting prior dewaxing on signal intensity was detectable indicating similar immunoreactivity in dewaxed and non-dewaxed sections. The intensity of staining the nucleus with the DNA-stain ToPro3 was similarly unaffected by omission of dewaxing in xylene. In conclusion, the HIER procedure described and tested can be used as a single procedure enabling dewaxing, hydration and epitope retrieval for immunohistochemistry in formalin fixed paraffin-embedded tissue.


Subject(s)
Epitopes/chemistry , Immunohistochemistry/methods , Staining and Labeling/methods , Animals , Epitopes/metabolism , Paraffin Embedding/methods , Rats , Tissue Fixation/methods
2.
J Dev Orig Health Dis ; 3(5): 364-74, 2012 Oct.
Article in English | MEDLINE | ID: mdl-25102266

ABSTRACT

Dietary protein restriction in pregnant females reduces offspring birth weight and increases the risk of developing obesity, type 2 diabetes and cardiovascular disease. Despite these grave consequences, few studies have addressed the effects of preconceptional maternal malnutrition. Here we investigate how a preconceptional low-protein (LP) diet affects offspring body mass and insulin-regulated glucose metabolism. Ten-week-old female mice (C57BL/6JBom) received either an LP or isocaloric control diet (8% and 22% crude protein, respectively) for 10 weeks before conception, but were thereafter fed standard laboratory chow (22.5% crude protein) during pregnancy, lactation and offspring growth. When the offspring were 10 weeks old, they were subjected to an intraperitoneal glucose tolerance test (GTT), and sacrificed after a 5-day recovery period to determine visceral organ mass. Body mass of LP male offspring was significantly lower at weaning compared with controls. A similar, nonsignificant, tendency was observed for LP female offspring. These differences in body mass disappeared within 1 week after weaning, a consequence of catch-up growth in LP offspring. GTTs of 10-week-old offspring revealed enhanced insulin sensitivity in LP offspring of both sexes. No differences were found in body mass, food intake or absolute size of visceral organs of adult offspring. Our results indicate that maternal protein restriction imposed before pregnancy produces effects similar to postconceptional malnutrition, namely, low birth weight, catch-up growth and enhanced insulin sensitivity at young adulthood. This could imply an increased risk of offspring developing lifestyle-acquired diseases during adulthood.


Subject(s)
Diet, Protein-Restricted , Glucose/metabolism , Prenatal Exposure Delayed Effects , Animals , Body Size , Female , Insulin/blood , Male , Maternal Nutritional Physiological Phenomena , Mice, Inbred C57BL , Organ Size , Pregnancy
3.
Acta Physiol (Oxf) ; 202(1): 47-57, 2011 May.
Article in English | MEDLINE | ID: mdl-21281457

ABSTRACT

AIM: To test the effects of dietary NaCl and carbohydrate content on urine volume in diabetic rats. METHODS: Streptozotocin-induced diabetic rats were subjected to NaCl restriction using either a NaCl-deficient carbohydrate-rich synthetic diet (Altromin C1036) supplemented to contain 0.16% NaCl (C1036 + lowNaCl) or a modified normal cereal-based diet (Altromin 1320) containing 0.086% NaCl (lowNaCl-1320). Normal diet contained 0.2683% NaCl. RESULTS: Using the C1036 + lowNaCl diet, earlier reported paradoxical increases in water intake and urine volume of diabetic rats were reproduced. However, water intake and urine volume also increased in diabetic rats offered the synthetic C1036 diet supplemented with NaCl to normal levels. Using the lowNaCl-1320 diet, water intake and urine volume were markedly reduced. Highly significant correlations between urine volume and both osmotic output and urinary glucose excretion were found in diabetic rats on normal diet, but these correlations were absent in diabetic rats on synthetic diet, which showed higher urine volumes than expected from the correlations. In contrast, urine volume was significantly correlated with carbohydrate intake in diabetic rats, irrespective of the diet. CONCLUSIONS: (i) The synthetic diet dramatically increases the urine volume in STZ-DM rats irrespectively of NaCl content. (ii) Rats with STZ-DM on a normal diet show reduced water intake and urine volume in response to dietary NaCl restriction. (iii) A shift to high carbohydrate diet induces polyuria in STZ-DM rats. (iv) Urine volume in all STZ-DM rats only shows correlation with dietary carbohydrate intake. (v) Glucose-driven osmotic diuresis is unlikely to explain the carbohydrate-induced polyuria.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Sodium Chloride/pharmacology , Sodium, Dietary/pharmacology , Urination/drug effects , Urine , Animals , Diet , Dietary Carbohydrates , Drinking , Female , Rats , Rats, Wistar
4.
Acta Physiol Scand ; 181(4): 505-12, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15283764

ABSTRACT

Recently five genes have been cloned, which code for sodium dependent bicarbonate transport proteins. These genes belong to the SLC4A gene family. This short review summarizes our knowledge of these gene products with respect to their renal distribution and function. The best characterized members are the SLC4A4 and SLC4A7. SLC4A4 codes for an electrogenic Na(+), HCO(3) (-)-cotransporter (NBCe1), which is present in the basolateral membranes of proximal tubules and is responsible for the bicarbonate efflux here, and thus about 80% of the renal bicarbonate reabsorption. SLC4A7 codes for an electroneutral NBC (called NBC3 and NBCn1), which is present basolaterally in the thick ascending limb and the distal part of the collecting ducts and in intercalated cells (either apically or basolaterally) in the connecting and collecting tubules. In the thick ascending limb NBCn1 may be important for NH(4) (+) reabsorption. SLCA5 codes for an electrogenic NBC (called NBC4 and NBCe2), which based on RT-PCR is located to the kidney but the exact localization awaits a good antibody. This is also the case for the SLC4A8 and SLC4A10 gene products, which are sodium dependent Cl(-), HCO(3) (-) exchangers. The recent development in this field substantially increases our understanding of the complex renal regulation of acid base status.


Subject(s)
Kidney/physiology , Sodium-Bicarbonate Symporters/physiology , Acid-Base Equilibrium/physiology , Acidosis/metabolism , Amino Acid Sequence , Animals , Humans , Molecular Sequence Data , Rats , Sodium-Bicarbonate Symporters/genetics
5.
J Appl Physiol (1985) ; 90(5): 1679-84, 2001 May.
Article in English | MEDLINE | ID: mdl-11299255

ABSTRACT

Oxygen-binding properties of single red blood cells from the red-eared turtle Trachemys scripta were measured by microspectrophotometry to describe the variation in oxygen affinity of red blood cells and to gain insight into the distribution of functionally different hemoglobins among red blood cells. Methodologically, this study represents the first report on the cell-to-cell variation in oxygen-binding properties based on oxygen-binding curves of single vertebrate red blood cells. The cells differed significantly with respect to oxygen affinity. Mean oxygen pressure at half saturation of the cells in a blood sample was found to be 20.1 +/- 3.3 (SD) Torr. The distribution of oxygen affinities among red blood cells is unimodal, indicating that the two hemoglobins found in turtle blood are not segregated in distinct cells. Therefore, the functional interaction shown by these hemoglobins in vitro is likely to take place in vivo. The considerable variation in oxygen affinity between individual red blood cells calls for its incorporation in models of tissue oxygenation.


Subject(s)
Erythrocytes/metabolism , Hemoglobins/metabolism , Oxygen/blood , Turtles/blood , Adenosine Triphosphate/blood , Analysis of Variance , Animals , Normal Distribution , Oxyhemoglobins/metabolism , Partial Pressure , Regression Analysis , Spectrophotometry/methods
6.
Article in English | MEDLINE | ID: mdl-10936762

ABSTRACT

Among vertebrates, turtles are able to tolerate exceptionally low oxygen tensions. We have investigated the compensatory mechanisms that regulate respiration and blood oxygen transport in snapping turtles during short exposure to hypoxia. Snapping turtles started to hyperventilate when oxygen levels dropped below 10% O(2). Total ventilation increased 1.75-fold, essentially related to an increase in respiration frequency. During normoxia, respiration occurred in bouts of four to five breaths, whereas at 5% O(2), the ventilation pattern was more regular with breathing bouts consisting of a single breath. The increase in the heart rate between breaths during hypoxia suggests that a high pulmonary blood flow may be maintained during non-ventilatory periods to improve arterial blood oxygenation. After 4 days of hypoxia at 5% O(2), hematocrit, hemoglobin concentration and multiplicity and intraerythrocytic organic phosphate concentration remained unaltered. Accordingly, oxygen binding curves at constant P(CO(2)) showed no changes in oxygen affinity and cooperativity. However, blood pH increased significantly from 7.50+/-0.05 under normoxia to 7.72+/-0.03 under hypoxia. The respiratory alkalosis will produce a pronounced in vivo left-shift of the blood oxygen dissociation curve due to the large Bohr effect and this is shown to be critical for arterial oxygen saturation.


Subject(s)
Adaptation, Physiological/physiology , Hypoxia/physiopathology , Respiration , Turtles/physiology , Animals , Chromatography, High Pressure Liquid , Isoelectric Focusing , Oxygen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...