Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Opt Express ; 20 Suppl 2: A205-12, 2012 Mar 12.
Article in English | MEDLINE | ID: mdl-22418669

ABSTRACT

The efficiency of organic light-emitting diodes (OLEDs) is still limited by poor light outcoupling. In particular, the excitation of surface plasmon polaritons (SPPs) at metal-organic interfaces represents a major loss channel. By combining optical simulations and experiments on simplified luminescent thin-film structures we elaborate the conditions for the extraction of SPPs via coupling to high-index media. As a proof-of-concept, we demonstrate the possibility to extract light from wave-guided modes and surface plasmons in a top-emitting white OLED by a high-index prism.

2.
Opt Express ; 19 Suppl 1: A7-19, 2011 Jan 03.
Article in English | MEDLINE | ID: mdl-21263715

ABSTRACT

Organic light-emitting diodes (OLEDs) usually exhibit a low light outcoupling efficiency because a large fraction of power is lost to surface plasmons (SPs) and waveguide modes. In this paper it is demonstrated that periodic grating structures with almost µm-scale can be used to extract SPs as well as waveguide modes and therefore enhance the outcoupling efficiency in light-emitting thin film structures. The gratings are fabricated by nanoimprint lithography using a commercially available diffraction grating as a mold which is pressed into a polymer resist. The outcoupling of SPs and waveguide modes is detected in fluorescent organic films adjacent to a thin metal layer in angular dependent photoluminescence measurements. Scattering up to 5th-order is observed and the extracted modes are identified by comparison to the SP and waveguide dispersion obtained from optical simulations. In order to demonstrate the low-cost, high quality and large area applicability of grating structures in optoelectronic devices, we also present SP extraction using a grating structure fabricated by a common DVD stamp.


Subject(s)
Nanotechnology/methods , Surface Plasmon Resonance/methods , Algorithms , Electronics , Fluorescent Dyes/chemistry , Light , Luminescence , Microscopy, Atomic Force/methods , Models, Statistical , Optics and Photonics , Organic Chemicals/chemistry , Scattering, Radiation
3.
Opt Express ; 16(22): 18426-36, 2008 Oct 27.
Article in English | MEDLINE | ID: mdl-18958121

ABSTRACT

A novel surface plasmon resonance (SPR) sensor based on an integrated planar and polychromatic light source is presented. The sensor comprises an organic light emitting diode (OLED) and a metallic sensing layer located on opposite sides of a glass prism. We successfully fabricated and tested prototype sensors based on this approach by the use of different prism geometries and OLEDs with blue, green and red emission color. We investigated the angular and wavelength dependent SPR dispersion relation for sensing layers consisting of silver and gold in contact with air. Further on we demonstrated the sensor function by real time monitoring of temperature changes inside an adjacent water reservoir as well as by recording the dissolving process of sodium chloride in water. The presented technique offers the advantage that there is no necessity to couple light from external bulky sources such as lasers or halogen lamps into the sensing device which makes it particularly interesting for miniaturization.

SELECTION OF CITATIONS
SEARCH DETAIL
...