Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cryst Growth Des ; 23(5): 3202-3212, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37159654

ABSTRACT

Dolomite [CaMg(CO3)2] formation under Earth surface conditions is considered largely inhibited, yet protodolomite (with a composition similar to dolomite but lacking cation ordering), and in some cases also dolomite, was documented in modern shallow marine and lacustrine, evaporative environments. Authigenic carbonate mud from Lake Neusiedl, a shallow, episodically evaporative lake in Austria consists mainly of Mg-calcite with zoning of Mg-rich and Mg-poor regions in µm-sized crystals. Within the Mg-rich regions, high-resolution transmission electron microscopy revealed < 5-nm-sized domains with dolomitic ordering, i.e., alternating lattice planes of Ca and Mg, in coherent orientation with the surrounding protodolomite. The calcite with less abundant Mg does not show such domains but is characterized by pitted surfaces and voids as a sign of dissolution. These observations suggest that protodolomite may overgrow Mg-calcite as a result of the changing chemistry of the lake water. During this process, oscillating concentrations (in particular of Mg and Ca) at the recrystallization front may have induced dissolution of Mg-calcite and growth of nanoscale domains of dolomite, which subsequently became incorporated as ordered domains in coherent orientation within less ordered regions. It is suggested that this crystallization pathway is capable of overcoming, at least at the nanoscale, the kinetic barrier to dolomite formation.

2.
Sci Rep ; 11(1): 2178, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500530

ABSTRACT

Tropical Pacific stalagmites are commonly affected by dating uncertainties because of their low U concentration and/or elevated initial 230Th content. This poses problems in establishing reliable trends and periodicities for droughts and pluvial episodes in a region vulnerable to climate change. Here we constrain the chronology of a Cook Islands stalagmite using synchrotron µXRF two-dimensional mapping of Sr concentrations coupled with growth laminae optical imaging constrained by in situ monitoring. Unidimensional LA-ICP-MS-generated Mg, Sr, Ba and Na variability series were anchored to the 2D Sr and optical maps. The annual hydrological significance of Mg, Sr, Ba and Na was tested by principal component analysis, which revealed that Mg and Na are related to dry-season, wind-transported marine aerosols, similar to the host-rock derived Sr and Ba signatures. Trace element annual banding was then used to generate a calendar-year master chronology with a dating uncertainty maximum of ± 15 years over 336 years. Our approach demonstrates that accurate chronologies and coupled hydroclimate proxies can be obtained from speleothems formed in tropical settings where low seasonality and problematic U-Th dating would discourage the use of high-resolution climate proxies datasets.

3.
Science ; 367(6483): 1235-1239, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32165584

ABSTRACT

Radiometric dating of glacial terminations over the past 640,000 years suggests pacing by Earth's climatic precession, with each glacial-interglacial period spanning four or five cycles of ~20,000 years. However, the lack of firm age estimates for older Pleistocene terminations confounds attempts to test the persistence of precession forcing. We combine an Italian speleothem record anchored by a uranium-lead chronology with North Atlantic ocean data to show that the first two deglaciations of the so-called 100,000-year world are separated by two obliquity cycles, with each termination starting at the same high phase of obliquity, but at opposing phases of precession. An assessment of 11 radiometrically dated terminations spanning the past million years suggests that obliquity exerted a persistent influence on not only their initiation but also their duration.

4.
Nat Commun ; 8: 15425, 2017 06 09.
Article in English | MEDLINE | ID: mdl-28598412

ABSTRACT

Marine sediment records suggest that episodes of major atmospheric CO2 drawdown during the last glacial period were linked to iron (Fe) fertilization of subantarctic surface waters. The principal source of this Fe is thought to be dust transported from southern mid-latitude deserts. However, uncertainty exists over contributions to CO2 sequestration from complementary Fe sources, such as the Antarctic ice sheet, due to the difficulty of locating and interrogating suitable archives that have the potential to preserve such information. Here we present petrographic, geochemical and microbial DNA evidence preserved in precisely dated subglacial calcites from close to the East Antarctic Ice-Sheet margin, which together suggest that volcanically-induced drainage of Fe-rich waters during the Last Glacial Maximum could have reached the Southern Ocean. Our results support a significant contribution of Antarctic volcanism to subglacial transport and delivery of nutrients with implications on ocean productivity at peak glacial conditions.

5.
J Hum Evol ; 82: 88-94, 2015 May.
Article in English | MEDLINE | ID: mdl-25805042

ABSTRACT

In 1993, a fossil hominin skeleton was discovered in the karst caves of Lamalunga, near Altamura, in southern Italy. Despite the fact that this specimen represents one of the most extraordinary hominin specimens ever found in Europe, for the last two decades our knowledge of it has been based purely on the documented on-site observations. Recently, the retrieval from the cave of a fragment of bone (part of the right scapula) allowed the first dating of the individual, the quantitative analysis of a diagnostic morphological feature, and a preliminary paleogenetic characterization of this hominin skeleton from Altamura. Overall, the results concur in indicating that it belongs to the hypodigm of Homo neanderthalensis, with some phenetic peculiarities that appear consistent with a chronology ranging from 172 ± 15 ka to 130.1 ± 1.9 ka. Thus, the skeleton from Altamura represents the most ancient Neanderthal from which endogenous DNA has ever been extracted.


Subject(s)
Caves , Fossils , Neanderthals , Paleontology/methods , Skeleton , Animals , Base Sequence , DNA/analysis , History, Ancient , Italy , Molecular Sequence Data , Phylogeny , Scapula/chemistry , Skeleton/chemistry
6.
Environ Sci Technol ; 43(5): 1310-5, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19350896

ABSTRACT

There is a shortage of archives of sulfur that can be used to investigate industrial orvolcanic pollution in terrestrial catchments, but the role of S as a nutrient, coupled with sparse published evidence, suggests that trees are promising targets. We focused on two conifer species (Picea abies (L.) Karst and Abies alba Miller) from an Alpine site in NE Italy. Bulk analyses of Abies demonstrate that S concentrations were higher in the second half of the 20th century but with some high outliers possibly reflecting particulate impurities. X-ray synchrotron analyses confirmed the observed time trend, which is similar to that of a nearby stalagmite, and reflects an atmospheric pollution record mediated by storage in the soil and ecosystem. S and P were found to be localized in the inner cell wall (ca. 2 microm wide), local thickenings of which probably account for some outlying high values of S in synchrotron studies. S occurs as a mixture of oxidation states (0 to +0.5, +2, +5, and +6) which are consistent in space and time. The results indicate that wood older than a few years contains archive-quality S but that robust conclusions require multiple replicate analyses.


Subject(s)
Environment , Sulfur/metabolism , Synchrotrons , Wood/metabolism , Abies/metabolism , Cell Wall/chemistry , Environmental Pollution , Models, Statistical , Picea/metabolism , Powders , Reproducibility of Results , Resins, Plant/chemistry , Spectrophotometry, Atomic , Time Factors , Trees/metabolism , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...