Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Mater Horiz ; 8(2): 639-644, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-34821281

ABSTRACT

Two-dimensional (2D) metal-halide perovskites are attractive for use in light harvesting and light emitting devices, presenting improved stability as compared to the more conventional three-dimensional perovskite phases. Significant attention has been paid to influencing the layer orientation of 2D perovskite phases, with the charge-carrier transport through the plane of the material being orders of magnitude more efficient than the interlayer transport. Importantly though, the thinnest members of the 2D perovskite family exhibit strong exciton binding energies, suggesting that interlayer energy transport mediated by dipole-dipole coupling may be relevant. We present transient microscopy measurements of the interlayer energy transport in the (PEA)2PbI4 perovskite. We find efficient interlayer exciton transport (0.06 cm2 s-1), which translates into a diffusion length that exceeds 100 nm and a sub-ps timescale for energy transfer. While still slower than the in-plane exciton transport (0.2 cm2 s-1), our results show that excitonic energy transport is considerably less anisotropic than charge-carrier transport for 2D perovskites.

3.
Proc Natl Acad Sci U S A ; 118(15)2021 04 13.
Article in English | MEDLINE | ID: mdl-33833057

ABSTRACT

Structural characterization of biologically formed materials is essential for understanding biological phenomena and their enviro-nment, and for generating new bio-inspired engineering concepts. For example, nacre-the inner lining of some mollusk shells-encodes local environmental conditions throughout its formation and has exceptional strength due to its nanoscale brick-and-mortar structure. This layered structure, comprising alternating transparent aragonite (CaCO3) tablets and thinner organic polymer layers, also results in stunning interference colors. Existing methods of structural characterization of nacre rely on some form of cross-sectional analysis, such as scanning or transmission electron microscopy or polarization-dependent imaging contrast (PIC) mapping. However, these techniques are destructive and too time- and resource-intensive to analyze large sample areas. Here, we present an all-optical, rapid, and nondestructive imaging technique-hyperspectral interference tomography (HIT)-to spatially map the structural parameters of nacre and other disordered layered materials. We combined hyperspectral imaging with optical-interference modeling to infer the mean tablet thickness and its disorder in nacre across entire mollusk shells from red and rainbow abalone (Haliotis rufescens and Haliotis iris) at various stages of development. We observed that in red abalone, unexpectedly, nacre tablet thickness decreases with age of the mollusk, despite roughly similar appearance of nacre at all ages and positions in the shell. Our rapid, inexpensive, and nondestructive method can be readily applied to in-field studies.


Subject(s)
Animal Shells/chemistry , Gastropoda/metabolism , Nacre/analysis , Optical Imaging/methods , Animal Shells/metabolism , Animals , Gastropoda/cytology , Optical Imaging/instrumentation , Optical Imaging/standards , Sensitivity and Specificity
4.
Sci Rep ; 8(1): 11971, 2018 08 10.
Article in English | MEDLINE | ID: mdl-30097592

ABSTRACT

To see color, the human visual system combines the response of three types of cone cells in the retina-a compressive process that discards a significant amount of spectral information. Here, we present designs based on thin-film optical filters with the goal of enhancing human color vision by breaking its inherent binocular redundancy, providing different spectral content to each eye. We fabricated a set of optical filters that "splits" the response of the short-wavelength cone between the two eyes in individuals with typical trichromatic vision, simulating the presence of approximately four distinct cone types. Such an increase in the number of effective cone types can reduce the prevalence of metamers-pairs of distinct spectra that resolve to the same tristimulus values. This technique may result in an enhancement of spectral perception, with applications ranging from camouflage detection and anti-counterfeiting to new types of artwork and data visualization.


Subject(s)
Color Vision , Vision Disparity , Vision, Binocular , Humans , Monte Carlo Method
SELECTION OF CITATIONS
SEARCH DETAIL
...