Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Cell Rep Med ; 4(4): 101002, 2023 04 18.
Article in English | MEDLINE | ID: mdl-37044095

ABSTRACT

A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CAH1047R-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CAH1047R breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype. Global phospho-proteomics indicates that combination with NAC enhances the inhibitory effect of alpelisib on mTOR signaling. In public datasets of human breast cancer, we find that NF1 is frequently mutated and that such mutations are enriched in metastases, an indication for which use of PI3Kα inhibitors has been approved. Our results raise the attractive possibility of combining PI3Kα inhibition with NAC supplementation, especially in patients with drug-resistant metastases associated with NF1 loss.


Subject(s)
Breast Neoplasms , Humans , Mice , Animals , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Phosphatidylinositol 3-Kinase , Acetylcysteine/pharmacology , Class I Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/genetics
2.
Bioorg Med Chem Lett ; 26(19): 4729-4734, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27575470

ABSTRACT

In vitro metabolic identification studies with a PI3K-α inhibitor lead molecule 1 identified a single predominant site of oxidative metabolism to be occurring within a tert.butyl moiety. Modification of the tert.butyl group within the lead molecule 1, to the corresponding d9-tert.butyl analogue 2, led to an increase in both the in vitro and in vivo metabolic stability. This increase in metabolic stability resulted in a 2-fold increase in the oral bioavailability measured in the rat, and a 3-fold increase in potency in a chronic in vivo study in the mouse, for 2 when compared to 1.


Subject(s)
Deuterium/metabolism , Enzyme Inhibitors/pharmacology , Phosphatidylinositol 3-Kinases/metabolism , Amides/chemistry , Animals , Biological Availability , Class I Phosphatidylinositol 3-Kinases , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacokinetics , Kinetics , Phosphoinositide-3 Kinase Inhibitors , Proline/chemistry , Rats , Thiazoles/chemistry , Urea/chemistry
3.
Breast Cancer Res ; 18(1): 41, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27048245

ABSTRACT

BACKGROUND: The PI3K pathway is hyperactivated in many cancers, including 70 % of breast cancers. Pan- and isoform-specific inhibitors of the PI3K pathway are currently being evaluated in clinical trials. However, the clinical responses to PI3K inhibitors when used as single agents are not as efficient as expected. METHODS: In order to anticipate potential molecular mechanisms of resistance to the p110α isoform-selective inhibitor BYL719, we developed resistant breast cancer cell lines, assessed the concomitant changes in cellular signaling pathways using unbiased phosphotyrosine proteomics and characterized the mechanism of resistance using pharmacological inhibitors. RESULTS: We found an increase in IGF1R, IRS1/IRS2 and p85 phosphorylation in the resistant lines. Co-immunoprecipitation experiments identified an IGF1R/IRS/p85/p110ß complex that causes the activation of AKT/mTOR/S6K and stifles the effects of BYL719. Pharmacological inhibition of members of this complex reduced mTOR/S6K activation and restored sensitivity to BYL719. CONCLUSION: Our study demonstrates that the IGF1R/p110ß/AKT/mTOR axis confers resistance to BYL719 in PIK3CA mutant breast cancers. This provides a rationale for the combined targeting of p110α with IGF1R or p110ß in patients with breast tumors harboring PIK3CA mutations.


Subject(s)
Breast Neoplasms/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Somatomedin/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Class Ia Phosphatidylinositol 3-Kinase/genetics , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , Humans , Insulin Receptor Substrate Proteins/genetics , Insulin Receptor Substrate Proteins/metabolism , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Proto-Oncogene Proteins c-akt/genetics , Receptor, IGF Type 1 , Receptors, Somatomedin/genetics , TOR Serine-Threonine Kinases/genetics , Thiazoles/administration & dosage , Xenograft Model Antitumor Assays
4.
J Med Chem ; 58(21): 8373-86, 2015 Nov 12.
Article in English | MEDLINE | ID: mdl-26505898

ABSTRACT

Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound 8 (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound 3, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound 8 entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies.


Subject(s)
Leukemia, Myeloid, Acute/drug therapy , Picolinic Acids/therapeutic use , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Amides/chemical synthesis , Amides/chemistry , Amides/therapeutic use , Animals , Cell Line, Tumor , Halogenation , Humans , Leukemia, Myeloid, Acute/metabolism , Mice , Models, Molecular , Picolinic Acids/chemical synthesis , Picolinic Acids/chemistry , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , Proto-Oncogene Proteins c-pim-1/metabolism
5.
Bioorg Med Chem Lett ; 25(17): 3575-81, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26199119

ABSTRACT

A cyclisation within a 4',5-bisthiazole (S)-proline-amide-urea series of selective PI3Kα inhibitors led to a novel 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole tricyclic sub-series. The synthesis and optimisation of this 4,5-dihydrobenzo[1,2-d:3,4-d]bisthiazole sub-series and the expansion to a related tricyclic 4,5-dihydrothiazolo[4,5-h]quinazoline sub-series are described. From this work analogues including 11, 12, 19 and 23 were identified as potent and selective PI3Kα inhibitor in vivo tool compounds.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinazolines/chemistry , Quinazolines/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Animals , Caco-2 Cells , Class I Phosphatidylinositol 3-Kinases , Female , Humans , Mice, Nude , Models, Molecular , Neoplasms/drug therapy , Neoplasms/enzymology , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Quinazolines/pharmacokinetics , Quinazolines/therapeutic use , Structure-Activity Relationship , Thiazoles/pharmacokinetics , Thiazoles/therapeutic use
7.
Bioorg Med Chem Lett ; 25(17): 3569-74, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26206504

ABSTRACT

Exploring the affinity-pocket binding moiety of a 2-aminothiazole (S)-proline-amide-urea series of selective PI3Kα inhibitors using a parallel-synthesis approach led to the identification of a novel 4',5-bisthiazole sub-series. The synthesis and optimisation of both the affinity pocket and (S)-proline amide moieties within this 4',5-bisthiazole sub-series are described. From this work a number of analogues, including 14 (A66) and 24, were identified as potent and selective PI3Kα inhibitor in vitro tool compounds.


Subject(s)
Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Urea/analogs & derivatives , Urea/pharmacology , Animals , Class I Phosphatidylinositol 3-Kinases , Humans , Models, Molecular , Molecular Dynamics Simulation , Phosphatidylinositol 3-Kinases/chemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositols
8.
Mol Cancer Ther ; 13(5): 1117-29, 2014 May.
Article in English | MEDLINE | ID: mdl-24608574

ABSTRACT

Somatic PIK3CA mutations are frequently found in solid tumors, raising the hypothesis that selective inhibition of PI3Kα may have robust efficacy in PIK3CA-mutant cancers while sparing patients the side-effects associated with broader inhibition of the class I phosphoinositide 3-kinase (PI3K) family. Here, we report the biologic properties of the 2-aminothiazole derivative NVP-BYL719, a selective inhibitor of PI3Kα and its most common oncogenic mutant forms. The compound selectivity combined with excellent drug-like properties translates to dose- and time-dependent inhibition of PI3Kα signaling in vivo, resulting in robust therapeutic efficacy and tolerability in PIK3CA-dependent tumors. Novel targeted therapeutics such as NVP-BYL719, designed to modulate aberrant functions elicited by cancer-specific genetic alterations upon which the disease depends, require well-defined patient stratification strategies in order to maximize their therapeutic impact and benefit for the patients. Here, we also describe the application of the Cancer Cell Line Encyclopedia as a preclinical platform to refine the patient stratification strategy for NVP-BYL719 and found that PIK3CA mutation was the foremost positive predictor of sensitivity while revealing additional positive and negative associations such as PIK3CA amplification and PTEN mutation, respectively. These patient selection determinants are being assayed in the ongoing NVP-BYL719 clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Thiazoles/pharmacology , Animals , Antineoplastic Agents/pharmacokinetics , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Resistance, Neoplasm/genetics , Female , Humans , Inhibitory Concentration 50 , Mice , Mutation , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/metabolism , PTEN Phosphohydrolase/genetics , PTEN Phosphohydrolase/metabolism , Phosphatidylinositol 3-Kinases/genetics , Rats , Thiazoles/pharmacokinetics , Xenograft Model Antitumor Assays
9.
J Clin Invest ; 124(4): 1794-809, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24569456

ABSTRACT

The genes encoding RAS family members are frequently mutated in juvenile myelomonocytic leukemia (JMML) and acute myeloid leukemia (AML). RAS proteins are difficult to target pharmacologically; therefore, targeting the downstream PI3K and RAF/MEK/ERK pathways represents a promising approach to treat RAS-addicted tumors. The p110α isoform of PI3K (encoded by Pik3ca) is an essential effector of oncogenic KRAS in murine lung tumors, but it is unknown whether p110α contributes to leukemia. To specifically examine the role of p110α in murine hematopoiesis and in leukemia, we conditionally deleted p110α in HSCs using the Cre-loxP system. Postnatal deletion of p110α resulted in mild anemia without affecting HSC self-renewal; however, deletion of p110α in mice with KRASG12D-associated JMML markedly delayed their death. Furthermore, the p110α-selective inhibitor BYL719 inhibited growth factor-independent KRASG12D BM colony formation and sensitized cells to a low dose of the MEK inhibitor MEK162. Furthermore, combined inhibition of p110α and MEK effectively reduced proliferation of RAS-mutated AML cell lines and disease in an AML murine xenograft model. Together, our data indicate that RAS-mutated myeloid leukemias are dependent on the PI3K isoform p110α, and combined pharmacologic inhibition of p110α and MEK could be an effective therapeutic strategy for JMML and AML.


Subject(s)
Genes, ras , Hematopoiesis/genetics , Hematopoiesis/physiology , Leukemia, Myeloid, Acute/enzymology , Leukemia, Myeloid, Acute/genetics , Leukemia, Myelomonocytic, Juvenile/enzymology , Leukemia, Myelomonocytic, Juvenile/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Erythropoiesis/genetics , Erythropoiesis/physiology , Heterografts , Humans , Leukemia, Myeloid, Acute/pathology , Leukemia, Myelomonocytic, Juvenile/pathology , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Mice, Knockout , Phosphatidylinositol 3-Kinases/deficiency , Signal Transduction
10.
Clin Cancer Res ; 20(7): 1834-45, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24474669

ABSTRACT

PURPOSE: PIM kinases have been shown to act as oncogenes in mice, with each family member being able to drive progression of hematologic cancers. Consistent with this, we found that PIMs are highly expressed in human hematologic cancers and show that each isoform has a distinct expression pattern among disease subtypes. This suggests that inhibitors of all three PIMs would be effective in treating multiple hematologic malignancies. EXPERIMENTAL DESIGN: Pan-PIM inhibitors have proven difficult to develop because PIM2 has a low Km for ATP and, thus, requires a very potent inhibitor to effectively block the kinase activity at the ATP levels in cells. We developed a potent and specific pan-PIM inhibitor, LGB321, which is active on PIM2 in the cellular context. RESULTS: LGB321 is active on PIM2-dependent multiple myeloma cell lines, where it inhibits proliferation, mTOR-C1 signaling and phosphorylation of BAD. Broad cancer cell line profiling of LGB321 demonstrates limited activity in cell lines derived from solid tumors. In contrast, significant activity in cell lines derived from diverse hematological lineages was observed, including acute lymphoblastic leukemia (ALL), acute myelogenous leukemia (AML), multiple myeloma and non-Hodgkin lymphoma (NHL). Furthermore, we demonstrate LGB321 activity in the KG-1 AML xenograft model, in which modulation of pharmacodynamics markers is predictive of efficacy. Finally, we demonstrate that LGB321 synergizes with cytarabine in this model. CONCLUSIONS: We have developed a potent and selective pan-PIM inhibitor with single-agent antiproliferative activity and show that it synergizes with cytarabine in an AML xenograft model. Our results strongly support the development of Pan-PIM inhibitors to treat hematologic malignancies.


Subject(s)
Hematologic Neoplasms/therapy , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-pim-1/genetics , Proto-Oncogene Proteins/genetics , Animals , Cell Line, Tumor , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Humans , Mice , Phosphorylation , Protein Kinase Inhibitors/therapeutic use , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proto-Oncogene Proteins/antagonists & inhibitors , Proto-Oncogene Proteins c-pim-1/antagonists & inhibitors , Signal Transduction/genetics , TOR Serine-Threonine Kinases/genetics , Xenograft Model Antitumor Assays
11.
Nat Med ; 20(1): 87-92, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24362935

ABSTRACT

Mantle cell lymphoma (MCL) is an aggressive malignancy that is characterized by poor prognosis. Large-scale pharmacological profiling across more than 100 hematological cell line models identified a subset of MCL cell lines that are highly sensitive to the B cell receptor (BCR) signaling inhibitors ibrutinib and sotrastaurin. Sensitive MCL models exhibited chronic activation of the BCR-driven classical nuclear factor-κB (NF-κB) pathway, whereas insensitive cell lines displayed activation of the alternative NF-κB pathway. Transcriptome sequencing revealed genetic lesions in alternative NF-κB pathway signaling components in ibrutinib-insensitive cell lines, and sequencing of 165 samples from patients with MCL identified recurrent mutations in TRAF2 or BIRC3 in 15% of these individuals. Although they are associated with insensitivity to ibrutinib, lesions in the alternative NF-κB pathway conferred dependence on the protein kinase NIK (also called mitogen-activated protein 3 kinase 14 or MAP3K14) both in vitro and in vivo. Thus, NIK is a new therapeutic target for MCL treatment, particularly for lymphomas that are refractory to BCR pathway inhibitors. Our findings reveal a pattern of mutually exclusive activation of the BCR-NF-κB or NIK-NF-κB pathways in MCL and provide critical insights into patient stratification strategies for NF-κB pathway-targeted agents.


Subject(s)
Lymphoma, Mantle-Cell/drug therapy , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Pyrroles/pharmacology , Quinazolines/pharmacology , Receptors, Antigen, B-Cell/metabolism , Signal Transduction/drug effects , Adenine/analogs & derivatives , Baculoviral IAP Repeat-Containing 3 Protein , Base Sequence , Blotting, Western , CARD Signaling Adaptor Proteins/metabolism , Cell Line , Cell Survival , DNA Primers/genetics , Guanylate Cyclase/metabolism , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Luminescent Measurements , Microarray Analysis , Molecular Sequence Data , Piperidines , Protein Serine-Threonine Kinases/genetics , Pyrazoles/pharmacology , Pyrimidines/pharmacology , RNA Interference , Real-Time Polymerase Chain Reaction , Receptors, Antigen, B-Cell/antagonists & inhibitors , Sequence Analysis, RNA , TNF Receptor-Associated Factor 2/genetics , TNF Receptor-Associated Factor 2/metabolism , TNF Receptor-Associated Factor 3/metabolism , Trypan Blue , Ubiquitin-Protein Ligases , NF-kappaB-Inducing Kinase
13.
Mol Cancer Ther ; 11(8): 1747-57, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22653967

ABSTRACT

The pan-phosphoinositide 3-kinase (PI3K) inhibitor BKM120 was found, at high concentrations, to cause cell death in various cellular systems, irrespective of their level of PI3K addiction. Transcriptional and biochemical profiling studies were used to identify the origin of these unexpected and apparently PI3K-independent effects. At 5- to 10-fold, the concentration needed to half-maximally inhibit PI3K signaling. BKM120 treatment caused changes in expression of mitotic genes and the induction of a robust G(2)-M arrest. Tubulin polymerization assays and nuclear magnetic resonance-binding studies revealed that BKM120 inhibited microtubule dynamics upon direct binding to tubulin. To assess the contribution of this off-target activity vis-à-vis the antitumor activity of BKM120 in PI3K-dependent tumors, we used a mechanistic PI3K-α-dependent model. We observed that, in vivo, daily treatment of mice with doses of BKM120 up to 40 mg/kg led to tumor regressions with no increase in the mitotic index. Thus, strong antitumor activity can be achieved in PI3K-dependent models at exposures that are below those necessary to engage the off-target activity. In comparison, the clinical data indicate that it is unlikely that BKM120 will achieve exposures sufficient to significantly engage the off-target activity at tolerated doses and schedules. However, in preclinical settings, the consequences of the off-target activity start to manifest themselves at concentrations above 1 µmol/L in vitro and doses above 50 mg/kg in efficacy studies using subcutaneous tumor-bearing mice. Hence, careful concentration and dose range selection is required to ensure that any observation can be correctly attributed to BKM120 inhibition of PI3K.


Subject(s)
Aminopyridines/pharmacology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Animals , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Indazoles/pharmacology , Mice , Mitosis/drug effects , Protein Multimerization/drug effects , Rats , Sulfonamides/pharmacology , Tubulin/metabolism
14.
Mol Cancer Ther ; 11(2): 317-28, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22188813

ABSTRACT

Following the discovery of NVP-BEZ235, our first dual pan-PI3K/mTOR clinical compound, we sought to identify additional phosphoinositide 3-kinase (PI3K) inhibitors from different chemical classes with a different selectivity profile. The key to achieve these objectives was to couple a structure-based design approach with intensive pharmacologic evaluation of selected compounds during the medicinal chemistry optimization process. Here, we report on the biologic characterization of the 2-morpholino pyrimidine derivative pan-PI3K inhibitor NVP-BKM120. This compound inhibits all four class I PI3K isoforms in biochemical assays with at least 50-fold selectivity against other protein kinases. The compound is also active against the most common somatic PI3Kα mutations but does not significantly inhibit the related class III (Vps34) and class IV (mTOR, DNA-PK) PI3K kinases. Consistent with its mechanism of action, NVP-BKM120 decreases the cellular levels of p-Akt in mechanistic models and relevant tumor cell lines, as well as downstream effectors in a concentration-dependent and pathway-specific manner. Tested in a panel of 353 cell lines, NVP-BKM120 exhibited preferential inhibition of tumor cells bearing PIK3CA mutations, in contrast to either KRAS or PTEN mutant models. NVP-BKM120 shows dose-dependent in vivo pharmacodynamic activity as measured by significant inhibition of p-Akt and tumor growth inhibition in mechanistic xenograft models. NVP-BKM120 behaves synergistically when combined with either targeted agents such as MEK or HER2 inhibitors or with cytotoxic agents such as docetaxel or temozolomide. The pharmacological, biologic, and preclinical safety profile of NVP-BKM120 supports its clinical development and the compound is undergoing phase II clinical trials in patients with cancer.


Subject(s)
Aminopyridines/pharmacology , Morpholines/pharmacology , Neoplasms/drug therapy , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacokinetics , Animals , Biological Availability , Blotting, Western , Cell Line, Tumor , Dose-Response Relationship, Drug , HCT116 Cells , HT29 Cells , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/genetics , Isoenzymes/metabolism , Mice , Mice, Nude , Models, Molecular , Molecular Structure , Morpholines/chemistry , Morpholines/pharmacokinetics , Mutation , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinase/chemistry , Phosphatidylinositol 3-Kinase/metabolism , Protein Binding , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Structure, Tertiary , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Rats , Tumor Burden/drug effects , Xenograft Model Antitumor Assays
15.
Proc Natl Acad Sci U S A ; 106(52): 22299-304, 2009 Dec 29.
Article in English | MEDLINE | ID: mdl-20007781

ABSTRACT

NVP-BEZ235 is a dual PI3K/mTOR inhibitor currently in phase I clinical trials. We profiled this compound against a panel of breast tumor cell lines to identify the patient populations that would benefit from such treatment. In this setting, NVP-BEZ235 selectively induced cell death in cell lines presenting either HER2 amplification and/or PIK3CA mutation, but not in cell lines with PTEN loss of function or KRAS mutations, for which resistance could be attributed, in part to ERK pathway activity. An in depth analysis of death markers revealed that the cell death observed upon NVP-BEZ235 treatment could be recapitulated with other PI3K inhibitors and that this event is linked to active PARP cleavage indicative of an apoptotic process. Moreover, the effect seemed to be partly independent of the caspase-9 executioner and mitochondrial activated caspases, suggesting an alternate route for apoptosis induction by PI3K inhibitors. Overall, this study will provide guidance for patient stratification for forthcoming breast cancer phase II trials for NVP-BEZ235.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms/drug therapy , Genes, erbB-2 , Imidazoles/pharmacology , Intracellular Signaling Peptides and Proteins/drug effects , Phosphoinositide-3 Kinase Inhibitors , Protein Serine-Threonine Kinases/drug effects , Quinolines/pharmacology , Apoptosis/genetics , Apoptosis/physiology , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Caspase 9/metabolism , Cell Line, Tumor , Class I Phosphatidylinositol 3-Kinases , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/physiology , Enzyme Inhibitors/pharmacology , Female , Gene Amplification , Genes, erbB-2/drug effects , Humans , Mutation , PTEN Phosphohydrolase/genetics , Phosphatidylinositol 3-Kinases/genetics , Poly(ADP-ribose) Polymerases/metabolism , Signal Transduction/drug effects , TOR Serine-Threonine Kinases
16.
Curr Opin Cell Biol ; 21(2): 194-8, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19201591

ABSTRACT

Epidemiological and experimental studies support an important role of the phosphoinosite 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) pathway in the biology of human cancers. Over the past few years a number of components of this signaling cascade have been the subject of intense drug discovery activities. This article summarizes progress made in the identification of kinase inhibitors of PI3K and mTOR, with an emphasis placed on drugs currently undergoing clinical trials. Potential combination strategies, safety concerns, and resistance mechanisms for this new generation of anticancer agents are also discussed.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein Kinases/metabolism , Clinical Trials as Topic , Drug Discovery , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/physiology , Sirolimus/therapeutic use , TOR Serine-Threonine Kinases
17.
Mol Cancer Ther ; 7(7): 1851-63, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18606717

ABSTRACT

The phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin inhibitor (mTOR) pathway is often constitutively activated in human tumor cells, providing unique opportunities for anticancer therapeutic intervention. NVP-BEZ235 is an imidazo[4,5-c]quinoline derivative that inhibits PI3K and mTOR kinase activity by binding to the ATP-binding cleft of these enzymes. In cellular settings using human tumor cell lines, this molecule is able to effectively and specifically block the dysfunctional activation of the PI3K pathway, inducing G(1) arrest. The cellular activity of NVP-BEZ235 translates well in in vivo models of human cancer. Thus, the compound was well tolerated, displayed disease stasis when administered orally, and enhanced the efficacy of other anticancer agents when used in in vivo combination studies. Ex vivo pharmacokinetic/pharmacodynamic analyses of tumor tissues showed a time-dependent correlation between compound concentration and PI3K/Akt pathway inhibition. Collectively, the preclinical data show that NVP-BEZ235 is a potent dual PI3K/mTOR modulator with favorable pharmaceutical properties. NVP-BEZ235 is currently in phase I clinical trials.


Subject(s)
Antineoplastic Agents/pharmacology , Imidazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Quinolines/pharmacology , Adenosine Triphosphate/metabolism , Administration, Oral , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/therapeutic use , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Glioblastoma/drug therapy , Humans , Imidazoles/chemistry , Imidazoles/pharmacokinetics , Imidazoles/therapeutic use , Mice , Mice, Nude , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Quinolines/chemistry , Quinolines/pharmacokinetics , Quinolines/therapeutic use , TOR Serine-Threonine Kinases , Xenograft Model Antitumor Assays
18.
Exp Eye Res ; 84(2): 266-74, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17101130

ABSTRACT

Atropine, a non-selective muscarinic receptor antagonist, is currently the most potent agent used to prevent myopia in animal models and children. However, the ocular target tissues are not well defined. To learn more about the effect of atropine on experimental myopia, atropine was applied both intravitreally and systemically (intraperitoneally) to chickens wearing either negative lenses or light diffusers. Furthermore, the effect of ipsilateral intravitreal atropine on myopia development in the saline-treated fellow eye was studied. Monocular intravitreal injections of atropine were performed daily for a period of 4 successive days, starting at day 8 post-hatching. Fellow eyes received saline injections. Chicks were fitted with -7D lenses, either over the atropine-injected eyes only (unilateral "lens-induced myopia (LIM)"), or over both eyes (bilateral LIM). Other groups of chicks were fitted with translucent diffusers over the atropine-injected eyes (unilateral "form deprivation myopia (FDM)"). Finally, atropine was intraperitoneally injected for 4 days in chicks that wore monocularly -7D lenses. Refractive errors (RE) were measured with infrared photoretinoscopy and axial length (AL) with A-scan ultrasonography. Atropine prevented development of myopia in both unilateral LIM and FDM in a dose-dependent fashion. Fifty percent inhibition of myopia was observed at a dose of 25 microg (unilateral LIM) or 90 microg atropine (bilateral LIM) and complete inhibition at 750 microg; in unilateral FDM, 50% inhibition occurred at 2.5 microg and almost 100% inhibition at 250 microg. Interestingly, at the highest dose of atropine (2500 microg), the treated eyes became even more hyperopic compared to the saline-injected contralateral eyes with normal visual experience. In the bilateral LIM model, atropine suppressed development of myopia in both the treated and the saline-injected control eye. However, about 8.3 times higher doses were necessary to achieve comparable contralateral suppression. Since this ratio is lower than the vitreous volume to blood volume ratio (about 1:23 in young chicks), it seems unlikely that systemic dilution of the intravitreally injected drug can fully account for the contralateral suppression. Intraperitoneal injection inhibited myopia development only at the highest dose (2500 microg) but, strikingly, this inhibition was still less when the same dose was provided through the vitreous of the fellow eye. Both eyes seem to be coupled by a yet unknown, perhaps neuronal pathway. Estimations of the scleral concentrations of atropine after intravitreal injection are compatible with the assumption that the suppression of myopia by atropine occurs by direct inhibition of scleral chondrocytes.


Subject(s)
Atropine/administration & dosage , Myopia/prevention & control , Animals , Atropine/therapeutic use , Chickens , Dose-Response Relationship, Drug , Eye/drug effects , Eye/growth & development , Injections , Injections, Intraperitoneal , Lenses , Male , Myopia/etiology , Sensory Deprivation , Vitreous Body
19.
Mol Cell Proteomics ; 5(11): 2158-66, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16921168

ABSTRACT

Good visual acuity requires that the axial length of the ocular globe is matched to the refractive power of the cornea and lens to focus the images of distant objects onto the retina. During the growth of the juvenile eye, this is achieved through the emmetropization process that adjusts the ocular axial length to compensate for the refractive changes that occur in the anterior segment. A failure of the emmetropization process can result in either excessive or insufficient axial growth, leading to myopia or hyperopia, respectively. Emmetropization is mainly regulated by the retina, which generates two opposite signals: "GO/GROW" signals to increase axial growth and "STOP" signals to block it. The presence of GO/GROW and STOP signals was investigated by a proteomics analysis of the retinas from chicken with experimental myopia and hyperopia. Of 18 differentially expressed proteins that were identified, five displayed an expression profile corresponding to GO/GROW signals, and two corresponded to STOP signals. Western blotting confirmed that apolipoprotein A-I (apoA-I) has the characteristics of a STOP signal both in the retina as well as in the fibrous sclera. In accordance with this, intraocular application of the peroxisome proliferator-activated receptor alpha agonist GW7647 resulted in up-regulation of apoA-I levels and in a significant reduction of experimental myopia. In conclusion, using a comprehensive functional proteomics analysis of chicken ocular growth models we identified targets for ocular growth control. The correlation of elevated apoA-I levels with reduced ocular axial growth points toward a functional relationship with the observed morphological changes of the eye.


Subject(s)
Apolipoprotein A-I/physiology , Eye Proteins/metabolism , Myopia/etiology , Proteome/metabolism , Retina/growth & development , Animals , Apolipoprotein A-I/analysis , Apolipoprotein A-I/metabolism , Blotting, Western , Butyrates/pharmacology , Chickens , Disease Models, Animal , Eye Proteins/analysis , Myopia/metabolism , PPAR alpha/agonists , Phenylurea Compounds/pharmacology , Proteome/analysis , Proteomics , Retina/chemistry , Retina/drug effects , Sclera/chemistry , Sclera/metabolism , Vimentin/analysis , Vimentin/metabolism
20.
Arthritis Res Ther ; 8(1): R4, 2006.
Article in English | MEDLINE | ID: mdl-16356190

ABSTRACT

Neonatal lupus erythematosus is a rare disorder caused by the transplacental passage of maternal autoantibodies. The 52-kDa Ro/SSA antigen (Ro52) ribonucleoprotein represents an antigenic target strongly associated with the autoimmune response in mothers whose children have neonatal lupus and cardiac conduction disturbances, mainly congenital heart block. The objective of this study was to identify putative Ro52/60-kDa Ro/SSA antigen (Ro60) epitopes associated with neonatal lupus and congenital heart block. The reactivity of IgG antibodies present in the sera from mothers with systemic lupus erythematosus and Sjögren's syndrome and in the sera from asymptomatic mothers (a longitudinal study of 192 samples from 66 subjects) was investigated by ELISA using Ro52, Ro60 and 48-kDa La/SSB antigen proteins, as well as 45 synthetic peptides, 13-24 residues long, of Ro52/Ro60 proteins. One to 19 samples collected before, during and after pregnancy were available for each mother. Forty-three disease controls selected randomly and normal sera were tested in parallel. Although no differences were found between Sjögren's syndrome and asymptomatic mothers of group I, who had at least one infant with neonatal lupus, and of group II, who had healthy babies only, significant differences were observed between lupus mothers from both groups. In the former group of lupus mothers, a significantly higher frequency of antibodies to Ro52 peptides 107-122 and 277-292 was observed. Between 18 and 30 weeks of gestation, the period of risk, there was clearly an elevated level of antibodies reacting with Ro52 peptides 1-13, 277-292 and 365-382. Antibodies to Ro52 peptide 365-382 have been shown previously to cross-react with residues 165-185 of the heart 5-HT4 serotoninergic receptor, and might be pathologically important. The level of these Ro52 antibody subsets decreased at the end of pregnancy and after delivery. IgG antibodies to Ro52 peptides 1-13, 107-122, 277-292 and 365-382 may therefore represent important biomarkers to predict a complication in pregnant lupus women with Ro52 antibodies.


Subject(s)
Autoantibodies/immunology , Autoantigens/immunology , Heart Defects, Congenital/immunology , Lupus Erythematosus, Systemic/immunology , RNA, Small Cytoplasmic/immunology , Ribonucleoproteins/immunology , Adult , Child , Enzyme-Linked Immunosorbent Assay , Epitopes/immunology , Female , Heart Defects, Congenital/genetics , Humans , Lupus Erythematosus, Systemic/congenital , Lupus Erythematosus, Systemic/genetics , Male , Middle Aged , Mothers , Peptide Fragments/immunology , Pregnancy , Pregnancy Complications/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...