Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 30(36): e202400357, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38651986

ABSTRACT

Transition metal complexes, particularly copper hydrides, play an important role in various catalytic processes and molecular inorganic chemistry. This study employs synchrotron hard X-ray spectroscopy to gain insights into the geometric and electronic properties of copper hydrides as potential catalysts for CO2 hydrogenation. The potential of high energy resolution X-ray absorption near-edge structure (HERFD-XANES) and valence-to-core X-ray emission (VtC-XES) is demonstrated with measurement on Stryker's reagent (Cu6H6) and [Cu3(µ3-H)(dpmppe)2](PF6)2 (Cu3H), alongside a non-hydride copper compound ICu(dtbppOH) (Cuy-I). The XANES analysis reveals that coordination geometries strongly influence the spectra, providing only indirect details about hydride coordination. The VtC-XES analysis exhibits a distinct signal around 8975 eV, offering a diagnostic tool to identify hydride ligands. Theoretical calculations support and extend these findings by comparing hydride-containing complexes with their hydride-free counterparts.

2.
ChemistryOpen ; 10(2): 265-271, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33646644

ABSTRACT

The controlled assembly of well-defined planar nanoclusters from molecular precursors is synthetically challenging and often plagued by the predominant formation of 3D-structures and nanoparticles. Herein, we report planar iron hydride nanoclusters from reactions of main group element hydrides with iron(II) bis(hexamethyldisilazide). The structures and properties of isolated Fe4 , Fe6 , and Fe7 nanoplatelets and calculated intermediates enable an unprecedented insight into the underlying building principle and growth mechanism of iron clusters, metal monolayers, and nanoparticles.

3.
Inorg Chem ; 59(13): 8762-8774, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32530276

ABSTRACT

In search of new ligand motifs for photoactive iron(II) complexes with long-lived MLCT states, a series of six complexes with tridentate amine-functionalized bis-n-heterocyclic carbene (NHC)-pyridine ligands is presented. In the homoleptic complexes imidazole-, methylimidazole-, or benzimidazole-2-ylidene, NHC donors are employed in combination with pyridine, functionalized in the 4-position by dimethylamine or dibenzylamine. The effects of these different functionalities on the electronic structure of the complexes are examined through detailed ground state characterization by NMR, single crystal X-ray diffraction, as well as electrochemical and spectroscopic methods. The net influence of these different functionalities on orbital-orbital and electrostatic ligand-iron interactions is investigated thoroughly by density functional theory, and changes in the excited state behavior and lifetimes are finally examined by ultrafast optical spectroscopy. Great deviations of the initially expected effects by substitution in 4-position on the photochemical properties are observed, together with a significantly increased π-acceptor interaction strength in the benzimidazole-2-ylidene functionalized complexes.

4.
ChemSusChem ; 12(16): 3864-3870, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31265757

ABSTRACT

The stereoselective hydrogenation of alkynes constitutes one of the key approaches for the construction of stereodefined alkenes. The majority of conventional methods utilize noble and toxic metal catalysts. This study concerns a simple catalyst comprised of the commercial chemicals iron(II) acetylacetonate and diisobutylaluminum hydride, which enables the Z-selective semihydrogenation of alkynes under near ambient conditions (1-3 bar H2 , 30 °C, 5 mol % [Fe]). Neither an elaborate catalyst preparation nor addition of ligands is required. Mechanistic studies (kinetic poisoning, X-ray absorption spectroscopy, TEM) strongly indicate the operation of small iron clusters and particle catalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...