Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Pharm ; 21(6): 2908-2921, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38743928

ABSTRACT

The physical stability of amorphous solid dispersions (ASDs) is a major topic in the formulation research of oral dosage forms. To minimize the effort of investigating the long-term stability using cost- and time-consuming experiments, we developed a thermodynamic and kinetic modeling framework to predict and understand the crystallization kinetics of ASDs during long-term storage below the glass transition. Since crystallization of the active phrarmaceutical ingredients (APIs) in ASDs largely depends on the amount of water absorbed by the ASDs, water-sorption kinetics and API-crystallization kinetics were considered simultaneously. The developed modeling approach allows prediction of the time evolution of viscosity, supersaturation, and crystallinity as a function of drug load, relative humidity, and temperature. It was applied and evaluated against two-year-lasting crystallization experiments of ASDs containing nifedipine and copovidone or HPMCAS measured in part I of this work. We could show that the proposed modeling approach is able to describe the interplay between water sorption and API crystallization and to predict long-term stabilities of ASDs just based on short-term measurements. Most importantly, it enables explaining and understanding the reasons for different and sometimes even unexpected crystallization behaviors of ASDs.


Subject(s)
Crystallization , Water , Crystallization/methods , Water/chemistry , Kinetics , Drug Stability , Nifedipine/chemistry , Vinyl Compounds/chemistry , Thermodynamics , Pyrrolidines/chemistry , Viscosity , Chemistry, Pharmaceutical/methods , Humidity , Temperature , Solubility , Methylcellulose/chemistry , Methylcellulose/analogs & derivatives
2.
Mol Pharm ; 20(4): 2194-2206, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36847428

ABSTRACT

Polymers like poly(vinylpyrrolidone-co-vinyl acetate) (PVPVA) or hydroxypropyl methylcellulose acetate succinate (HPMCAS) are commonly used as a matrix for amorphous solid dispersions (ASDs) to enhance the bioavailability of the active pharmaceutical ingredients (APIs). The stability of ASDs is strongly influenced by the water sorption in the ASD from the surrounding air. In this work, the water sorption in the neat polymers PVPVA and HPMCAS, in the neat API nifedipine (NIF), and in their ASDs of different drug loads was measured above and below the glass-transition temperature. The equilibrium water sorption was predicted using the Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) combined with the Non-Equilibrium Thermodynamics of Glassy Polymers (NET-GP).The water-sorption kinetics were modeled using the Maxwell-Stefan approach whereas the thermodynamic driving force was calculated using PC-SAFT and NET-GP. The water diffusion coefficients in the polymers, NIF, or ASDs were determined using the Free-Volume Theory. Using the water-sorption kinetics of the pure polymers and of NIF, the water-sorption kinetics of the ASDs were successfully predicted, thus providing the water diffusion coefficients in the ASD as a function of relative humidity and of the water concentration in polymers or ASDs.


Subject(s)
Nifedipine , Polymers , Water , Chemistry, Pharmaceutical , Drug Stability , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...