Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Dalton Trans ; 53(18): 8041-8049, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38652019

ABSTRACT

Octahedrally coordinated spin crossover (SCO) FeII complexes represent an important class of switchable molecular materials. This study presents the synthesis and characterisation of a novel complex, [FeII(ppt-2Fph)2]0·2MeOH, where ppt-2Fph is a new asymmetric ionogenic tridentate planar ligand 2-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)-6-(1H-pyrazol-1-yl)pyridine. The complex exhibits a hysteretic thermally induced SCO transition at 285 K on cooling and at 293 K on heating, as well as light induced excited spin state trapping (LIESST) at lower temperatures with a relaxation T(LIESST) temperature of 73 K. Single crystal analysis in both spin states shows that the compound undergoes an unusual partial (25%) reversible order-disorder of the asymmetrically substituted phenyl group coupled to the thermal SCO. The highly cooperative SCO transition, analysed by structural energy framework analysis at the B3LYP/6-31G(d,p) theory level, revealed the co-existence of stabilising and destabilising energy variations in the lattice. The observed antagonism of intermolecular interactions and synchronous rotational disorder, which contributes to the overall entropy change, is suggested to be at the origin of the cooperative SCO transition.

2.
Dalton Trans ; 53(9): 4251-4259, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38334952

ABSTRACT

Chemical composition is leading among the numerous factors that determine the spin transition properties of coordination compounds. Classic dicyanometallic bridges {M(CN)2}- are commonly used to build Hofmann-like spin-crossover frameworks, but some extended bridges are also synthetically available. In this paper, we describe a successful synthesis of two very similar spin-crossover frameworks that differ in the cyanometallic bridges involved, namely [Fe(etpz)2{Ag(CN)2}2] (1) and {Fe(etpz)2[Ag2(CN)3][Ag(CN)2]} (2) (where etpz = 2-ethylpyrazine). Magnetic and Mössbauer studies demonstrated the occurrence of abrupt one-step high-spin (HS) ↔ low-spin (LS) transitions for both complexes. The spin transition temperatures are T1/2 ↓ = 233 K and T1/2 ↑ = 243 K for 1 and T1/2 ↓ = 188 K and T1/2 ↑ = 191 K for 2 with thermal hysteresis loops of 10 K for 1 and 3 K for 2. The bridging mononuclear [Ag(CN)2]- units and FeII cations assemble to form infinite 2D layers in the structure of 1. Interestingly, compound 2 forms 2D layers of FeII cations bridged by both binuclear [Ag2(CN)3]- and mononuclear [Ag(CN)2]- units. The structures of 1 and 2 comprise different types of intermolecular interactions including Ag⋯Ag and Ag⋯Netpz, which induce the creation of supramolecular 3D frameworks. The synergy between metallophilic interactions and the spin transition is also confirmed by the variation of Ag⋯Ag distances during spin crossover. The characterization of such analogues allowed us to analyze in detail the effect of the cyanometallic bridge on the structure of new frameworks and on the bistability in Hofmann-like complexes.

3.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 1): 25-28, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38312161

ABSTRACT

The synthetic availability of mol-ecular water oxidation catalysts containing high-valent ions of 3d metals in the active site is a prerequisite to enabling photo- and electrochemical water splitting on a large scale. Herein, the synthesis and crystal structure of di-ammonium {µ-1,3,4,7,8,10,12,13,16,17,19,22-dodeca-aza-tetra-cyclo-[8.8.4.13,17.18,12]tetra-cosane-5,6,14,15,20,21-hexa-onato}ferrate(IV) acetic acid tris-olvate, (NH4)2[FeIV(C12H12N12O6)]·3CH3COOH or (NH4)2[FeIV(L-6H)]·3CH3COOH is reported. The FeIV ion is encapsulated by the macropolycyclic ligand, which can be described as a dodeca-aza-quadricyclic cage with two capping tri-aza-cyclo-hexane fragments making three five- and six six-membered alternating chelate rings with the central FeIV ion. The local coord-ination environment of FeIV is formed by six deprotonated hydrazide nitro-gen atoms, which stabilize the unusual oxidation state. The FeIV ion lies on a twofold rotation axis (multiplicity 4, Wyckoff letter e) of the space group C2/c. Its coordination geometry is inter-mediate between a trigonal prism (distortion angle φ = 0°) and an anti-prism (φ = 60°) with φ = 31.1°. The Fe-N bond lengths lie in the range 1.9376 (13)-1.9617 (13) Å, as expected for tetra-valent iron. Structure analysis revealed that three acetic acid mol-ecules additionally co-crystallize per one iron(IV) complex, and one of them is positionally disordered over four positions. In the crystal structure, the ammonium cations, complex dianions and acetic acid mol-ecules are inter-connected by an intricate system of hydrogen bonds, mainly via the oxamide oxygen atoms acting as acceptors.

4.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 11): 1059-1062, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37936846

ABSTRACT

The title compound, [FeLi2(C12H12N12O6)(H2O)4]·4H2O, consists of iron complex anions, lithium cations and water mol-ecules. The complex anion shows a clathrochelate topology. The coordination geometry of the FeIV centre is inter-mediate between a trigonal prism and a trigonal anti-prism. In the crystal, the complex anions are connected through two Li cations into dimers, which are connected by Li-O bonds, forming infinite chains along the b-axis direction.

5.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 10): 962-966, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37817956

ABSTRACT

The unit cell of the title compound, [Fe(C18H15N6O2)2]·2CH3OH·2CHCl3, consists of a charge-neutral complex mol-ecule, two methanol and two chloro-form mol-ecules. In the complex, the two tridentate 2-(5-(3,4-di-meth-oxy-phen-yl)-1,2,4-triazol-3-yl)-6-(pyrazol-1-yl)pyridine ligands coordinate to the central FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere. Neighbouring tapered mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into one-dimensional chains, which are joined into two-dimensional layers through weak C-H⋯N/C/O inter-actions. Furthermore, the layers stack in a three-dimensional network linked by weak inter-layer C-H⋯π inter-actions of the meth-oxy and phenyl groups. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 32.0%, H⋯C/C⋯H 26.3%, H⋯N/N⋯H 13.8%, and H⋯O/O⋯H 7.5%. The average Fe-N bond distance is 2.185 Å, indicating the high-spin state of the FeII ion. Energy framework analysis at the HF/3-21 G theory level was performed to qu-antify the inter-action energies in the crystal structure.

6.
Dalton Trans ; 52(30): 10545-10556, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37458339

ABSTRACT

Lead halide hybrid perovskites incorporating chiral organic cations attract considerable attention due to their promising application in multifarious optoelectronic devices. However, the examples of chiral hybrid perovskites are still limited, which greatly impedes their further studies in various optoelectronic fields. Herein, we report on new low-dimensional lead-halide hybrid perovskites incorporating the enantiopure chiral α-amino acid L-proline. Two hybrid perovskites (L-proH)PbBr3·H2O (Pro-PbBr3) and (L-proH)4Pb3Br10·4H2O (Pro-Pb3Br10) have been synthesized by employing different ratios of organic and inorganic precursors. According to structural analysis, the inorganic sublattice of compound Pro-PbBr3 is built of one-dimensional (1D) [PbX3]∞n- lead halide chains, whereas the inorganic sublattice of compound Pro-Pb3Br10 is built upon a rare two-dimensional (2D) [Pb3Br10]∞4n- honeycomb-type inorganic framework. Hirshfeld surface analysis revealed an important role of various hydrogen bonding interactions in providing the binding between organic and inorganic parts of these hybrid perovskites. The optical band gap values of new hybrid perovskites as estimated using the Tauc plot approach are 4.19 eV (Pro-PbBr3) and 4.13 eV (Pro-Pb3Br10). Also, new compounds display low-temperature broadband photoluminescence which can be attributed to the self-trapped excitons. These results show the potential of α-proline for constructing novel and highly demanded chiral hybrid perovskites, which will hold great promise for further optoelectronic applications.

7.
Inorg Chem ; 62(23): 9044-9053, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37227233

ABSTRACT

We report herein a series of neutral trans-thiocyanate mononuclear spin crossover (SCO) complexes, [FeIIL(NCS)2] (1-4), based on tetradentate ligands L obtained by reaction of N-substituted 1,2,3-triazolecarbaldehyde with 1,3-propanediamine or 2,2-dimethyl-1,3-diaminopropane [L = N1,N3-bis((1,5-dimethyl-1H-1,2,3-triazol-4-yl)methylene)propane-1,3-diamine/-2,2-dimethylpropane-1,3-diamine, 1/2 and N1,N3-bis((1-ethyl/1-propyl-1H-1,2,3-triazol-4-yl)methylene)-2,2-dimethylpropane-1,3-diamine, 3/4]. The thermal-induced SCO behavior is characterized by abrupt transitions with an average critical temperature (ΔT1/2)/hysteresis loop width (ΔThyst) in the range 190-252/5-14 K, while the photo-generated metastable high-spin (HS) phases are characterized by TLIESST temperatures in the range 44-59 K. Single crystal analysis shows that except 1, all compounds experience reversible symmetry breaking coupled with the thermal SCO. Furthermore, 4 experiences an additional phase transition at ca. 290 K responsible for the coexistence of two HS phases quenched at 10 K through LIESST and TIESST effects. The molecules form hexagonally packed arrays sustained by numerous weak CH···S and C···C/S···C/N···C bonds involving polar coordination cores, while non-polar pendant aliphatic substituents are segregated inside, occupying hexagonal channels. Energy framework analysis of complexes with one step SCO transition (1, 2, and 4) shows a correlation between the cooperativity and the amplitude of changes in the molecule-molecule interactions in the lattice at the SCO transition.

8.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 12): 1151-1154, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38313118

ABSTRACT

The reaction of cadmium bromide tetra-hydrate with 3-amino-pyrazole (3-apz) in ethano-lic solution leads to tautomerization of the ligand and the formation of crystals of the title compound, catena-poly[[di-bromido-cadmium(II)]-bis-(µ-3-amino-1H-pyrazole)-κ2 N 3:N 2;κ2 N 2:N 3], [CdBr2(C3H5N3)2]n or [CdBr2(3-apz)2]n. Its asymmetric unit consists of a half of a Cd2+ cation, a bromide anion and a 3-apz mol-ecule. The Cd2+ cations are coordinated by two bromide anions and two 3-apz ligands, generating trans-CdN4Br2 octa-hedra, which are linked into chains by pairs of the bridging ligands. In the crystal, the ligand mol-ecules and bromide anions of neighboring chains are linked through inter-chain hydrogen bonds into a two-dimensional network. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative qu-anti-tative contributions of the weak inter-molecular contacts.

9.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 11): 1138-1142, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36380908

ABSTRACT

The unit cell of the title compound, [FeII(C17H12BrN6O)2]·2MeOH, consists of a charge-neutral complex mol-ecule and two independent mol-ecules of methanol. In the complex mol-ecule, the two tridentate ligand mol-ecules 2-[5-(3-bromo-4-meth-oxy-phen-yl)-4H-1,2,4-triazol-3-yl]-6-(1H-pyrazol-1-yl)pyridine coordinate to the FeII ion through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere around the central ion. In the crystal, neighbouring asymmetric mol-ecules are linked through weak C-H(pz)⋯π(ph) inter-actions into chains, which are then linked into layers by weak C-H⋯N/C inter-actions. Finally, the layers stack into a three-dimensional network linked by weak inter-layer C-H⋯π inter-actions between the meth-oxy groups and the phenyl rings. The inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing the relative contributions of the contacts to the crystal packing to be H⋯H 34.2%, H⋯C/C⋯H 25.2%, H⋯Br/Br⋯H 13.2%, H⋯N/N⋯H 12.2% and H⋯O/O⋯H 4.0%. The average Fe-N bond distance is 1.949 Å, indicating the low-spin state of the FeII ion. Energy framework analysis at the HF/3-21 G theory level was performed to qu-antify the inter-action energies in the crystal structure.

10.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 11): 1107-1112, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36380912

ABSTRACT

As a result of the high symmetry of the Aea2 structure, the asymmetric unit of the title compound, [FeII(C18H15N6)2]·2MeOH, consists of half of a charge-neutral complex mol-ecule and a discrete methanol mol-ecule. The planar anionic tridentate ligand 2-[5-(3,4-di-methyl-phen-yl)-4H-1,2,4-triazol-3-ato]-6-(1H-pyrazol-1-yl)pyridine coordinates the FeII ion meridionally through the N atoms of the pyrazole, pyridine and triazole groups, forming a pseudo-octa-hedral coordination sphere of the central ion. The average Fe-N bond distance is 1.955 Å, indicating a low-spin state of the FeII ion. Neighbouring cone-shaped mol-ecules, nested into each other, are linked through double weak C-H(pz)⋯π(ph') inter-actions into mono-periodic columns, which are further linked through weak C-H⋯N'/C' inter-actions into di-periodic layers. No inter-actions shorter than the sum of the van der Waals radii of the neighbouring layers are observed. Energy framework analysis at the B3LYP/6-31 G(d,p) theory level, performed to qu-antify the inter-molecular inter-action energies, reproduces the weak inter-layer inter-actions in contrast to the strong inter-action within the layers. Inter-molecular contacts were qu-anti-fied using Hirshfeld surface analysis and two-dimensional fingerprint plots, showing the relative contributions of the contacts to the crystal packing to be H⋯H 48.5%, H⋯C/C⋯H 28.9%, H⋯N/N⋯H 16.2% and C⋯C 2.4%.

11.
Inorg Chem ; 61(37): 14761-14769, 2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36067517

ABSTRACT

Hysteretic spin crossover in coordination complexes of 3d-metal ions represents one of the most spectacular phenomena of molecular bistability. In this paper we describe a self-assembly of pyrazine (pz) and Fe(BH3CN)2 that afforded the new 2D coordination polymer [Fe(pz)2(BH3CN)2]∞. It undergoes an abrupt, hysteretic spin crossover (SCO) with a T1/2 of 338 K (heating) and 326 K (cooling) according to magnetic susceptibility measurements. Mössbauer spectroscopy revealed a complete transition between the low-spin (LS) and the high-spin (HS) states of the iron centers. This LS-to-HS transition induced an increase of the unit cell volume by 10.6%. Meanwhile, a modulation of multiple [C-Hδ+···Hδ--B] dihydrogen bonds stimulates a contraction in direction c (2.2%). The simplicity of the synthesis, mild temperatures of transition, a pronounced thermochromism, stability upon thermal cycling, a striking volume expansion upon SCO, and an easy processability to composite films make this new complex an attractive material for switchable components of diverse applications.

12.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 12): 1303-1306, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34925903

ABSTRACT

9-Amino-acridinium chloride N,N-di-methyl-formamide monosolvate, C13H11N2 +Cl-·C3H7NO, crystallizes in the monoclinic space group P21/c. The salt was crystallized from N,N-di-methyl-formamide. The asymmetric unit consists of two C13H11N2 +Cl- formula units. The 9-amino-acridinium (9-AA) mol-ecules are protonated with the proton on the N atom of the central ring. This N atom is connected to an N,N-di-methyl-formamide mol-ecule by a hydrogen bond. The H atoms of the amino groups create short contacts with two chloride ions. The 9-AA cations in adjacent layers are oriented in an anti-parallel manner. The mol-ecules are linked via a network of multidirectional π-π inter-actions between the 9-AA rings, and the whole lattice is additionally stabilized by electrostatic inter-actions between ions.

13.
Chem Commun (Camb) ; 57(84): 11060-11063, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34610631

ABSTRACT

Mn cage complexes are rare, and the ones successfully isolated in the solid state are not stable in water and organic solvents. Herein, we present the first report of mononuclear Mn clathrochelates, in which the encapsulated metal exists in the oxidation state +4. The complexes are extremely stable in the crystalline state and in solutions and show rich redox chemistry.

14.
Inorg Chem ; 60(17): 13332-13347, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34414758

ABSTRACT

Increasing attention has been recently devoted to 89Zr(IV) and 68Ga(III) radionuclides, due to their favorable decay characteristics for positron emission tomography (PET). In the present paper, a deep investigation is presented on Ga(III) and Zr(IV) complexes with a series of tri-(H3L1, H3L3, H3L4 and desferrioxamine E, DFOE) and tetrahydroxamate (H4L2) ligands. Herein, we describe the rational design and synthesis of two cyclic complexing agents (H3L1 and H4L2) bearing three and four hydroxamate chelating groups, respectively. The ligand structures allow us to take advantage of the macrocyclic effect; the H4L2 chelator contains an additional side amino group available for a possible further conjugation with a biomolecule. The thermodynamic stability of Ga(III) and Zr(IV) complexes in solution has been measured using a combination of potentiometric and pH-dependent UV-vis titrations, on the basis of metal-metal competition. The Zr(IV)-H4L2 complex is characterized by one of the highest formation constants reported to date for a tetrahydroxamate zirconium chelate (log ß = 45.9, pZr = 37.0), although the complex-stability increase derived from the introduction of the fourth hydroxamate binding unit is lower than that predicted by theoretical calculations. Solution studies on Ga(III) complexes revealed that H3L1 and H4L2 are stronger chelators in comparison to DFOB. The complex stability obtained with the new ligands is also compared with that previously reported for other hydroxamate ligands. In addition to increasing the library of the thermodynamic stability data of Ga(III) and Zr(IV) complexes, the present work allows new insights into Ga(III) and Zr(IV) coordination chemistry and thermodynamics and broadens the selection of available chelators for 68Ga(III) and 89Zr(IV).

15.
Dalton Trans ; 50(26): 9250-9258, 2021 Jul 06.
Article in English | MEDLINE | ID: mdl-34128522

ABSTRACT

Hofmann-like cyanometallic complexes represent one of the biggest and well-known classes of FeII spin-crossover compounds. In this paper, we report on the first FeII Hofmann clathrate analogues with unsubstituted 1,2,3-triazole, which exhibit temperature induced spin transition. Two new coordination polymers with the general formula [FeII(1,2,3-triazole)2MII(CN)4] (M = Pt, Pd) undergo abrupt hysteretic spin crossover in the range of 190-225 K as revealed by magnetic susceptibility measurements. Two compounds are isostructural and are built of infinite cyanometallic layers which are supported by 1,2,3-triazole ligands. The thermal hysteresis loop is very stable at different scan rates from 0.5 to 10 K min-1. The compounds display strong thermochromic effect, changing their colour from pink in the low-spin state to white in the high-spin state. Our findings show that 1,2,3-triazole is suitable for elaboration of spin-crossover Hofmann clathrate analogues, and its use instead of more classical azines can advantageously expand this family of complexes.

16.
Dalton Trans ; 49(16): 5302-5311, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32242883

ABSTRACT

Two new 2D spin-crossover (SCO) analogues of Hofmann clathrates of composition [Fe(phth)2MII(CN)4] (where phth = phthalazine; MII = Pd, Pt) have been synthesized and their structures and switchable behaviour have been characterized. Single-crystal X-ray analysis reveals that the Pt and Pd derivatives contain FeII centres equatorially surrounded by four equivalent µ4-[MII(CN)4]2- groups. Two crystallographically equivalent phthalazine (phth) ligands occupy the axial positions of each FeII site, completing its octahedral coordination environment. The stabilization of these structures is realized via supramolecular C-HM interactions and π-π stacking. Temperature-dependent magnetic susceptibility measurements showed that Pt (T1/2↓ = 211 K and T1/2↑ = 218 K) and Pd (T1/2↓ = 202 K and T1/2↑ = 207 K) derivatives display cooperative spin crossover with narrow thermal hysteresis loops. In addition, spin crossover in these complexes was characterized by optical measurements, differential scanning calorimetry, and IR and Raman spectroscopy. This research shows that the use of phthalazine leads to the production of new SCO systems with attractive transition characteristics and opens up new perspectives for the design of switchable complexes based on fused bicyclic azine ligands.

17.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 3): 303-308, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32148865

ABSTRACT

The unit cell of the title compound, [Zn(C17H18N3O4)2]·CH4O·C2H6O, contains two complex mol-ecules related by an inversion centre, plus one methanol and one ethanol solvent molecule per complex molecule. In each complex, two deprotonated pyridine aroylhydrazone ligands {3,4,5-trimeth-oxy-N'-[1-(pyridin-2-yl)ethyl-idene]benzohydrazide} coordinate to the ZnII ion through the N atoms of the pyridine group and the ketamine, and, additionally, through the O atom of the enolate group. In the crystal, dimers are formed by π-π inter-actions between the planar ligand moieties, which are further connected by C⋯O and C⋯C inter-actions. The inter-molecular inter-actions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H⋯H (44.8%), H⋯C/C⋯H (22.2%), H⋯O/O⋯H (18.7%) and C⋯C (3.9%) inter-actions.

18.
Acta Crystallogr E Crystallogr Commun ; 76(Pt 1): 62-65, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31921453

ABSTRACT

In the mol-ecule of the title anthracene derivative, C22H17NO2, the benzene ring is inclined to the mean plane of the anthracene ring system (r.m.s. deviation = 0.024 Å) by 75.21 (9)°. In the crystal, mol-ecules are linked by pairs of O-H⋯O hydrogen bonds, forming classical carb-oxy-lic acid inversion dimers with an R 2 2(8) ring motif. The dimers are linked by C-H⋯π inter-actions, forming a supra-molecular framework.

19.
RSC Adv ; 10(36): 21621-21628, 2020 Jun 02.
Article in English | MEDLINE | ID: mdl-35518746

ABSTRACT

Materials that are able to switch microwave radiation are strongly desired for their potential applications in electronic devices. In this paper, we show the spin-dependant interaction of spin-crossover materials with microwave radiation, namely, the ability of coordination compounds [Fe(NH2trz)3]Br2 and [Fe(NH2trz)3](NO3)2 that undergo a cooperative spin transition between low-spin and high-spin states to operate as thermoswitchable microwave absorbers. The characteristics of the microwave reflection and transmission of these spin-crossover complexes were investigated at variable temperatures. The evolution of both the transmission and reflection spectra in the 26-37 GHz frequency band within the temperature range of spin crossover showed significant differences in the interaction of microwave radiation with the high-spin and low-spin forms of the compounds. The microwave transmission coefficient shows a notable decrease upon transition to the high-spin state, while the reflection coefficient can be both increased or decreased on the characteristic frequencies during the spin transition. The different microwave absorbing properties of the low-spin and high-spin forms are found to be associated with a notable microwave permittivity change upon spin crossover. The switchable microwave reflection/transmission correlates well with the transition characteristics found in the optical and differential scanning calorimetry measurements. These results widen the spectroscopic range in which spin-crossover materials can be applied and contribute to the creation of a preliminary database of the microwave absorbing properties of spin-crossover complexes.

20.
Acta Crystallogr E Crystallogr Commun ; 75(Pt 12): 1930-1933, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31871760

ABSTRACT

The title compound, C14H12BrNO2, was synthesized by the condensation reaction of 2,3-di-hydroxy-benzaldehyde and 2-bromo-3-methyl-aniline. It crystallizes in the centrosymmetric triclinic space group P . The configuration about the C=N bond is E. The dihedral angle between the planes of the 5-(2-bromo-3-methyl-phenyl ring and the catechol ring is 2.80 (17)°. In the crystal, O-H⋯O hydrogen-bond inter-actions consolidate the crystal packing.

SELECTION OF CITATIONS
SEARCH DETAIL
...