Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 56(2): 260-7, 2016 08.
Article in English | MEDLINE | ID: mdl-27462034

ABSTRACT

Migratory animals are simultaneously challenged by the physiological demands of long-distance movements and the need to avoid natural enemies including parasites and pathogens. The potential for animal migrations to disperse pathogens across large geographic areas has prompted a growing body of research investigating the interactions between migration and infection. However, the phenomenon of animal migration is yet to be incorporated into broader theories in disease ecology. Because migrations may expose animals to a greater number and diversity of pathogens, increase contact rates between hosts, and render them more susceptible to infection via changes to immune function, migration has the potential to generate both "superspreader species" and infection "hotspots". However, migration has also been shown to reduce transmission in some species, by facilitating parasite avoidance ("migratory escape") and weeding out infected individuals ("migratory culling"). This symposium was convened in an effort to characterize more broadly the role that animal migrations play in the dynamics of infectious disease, by integrating a range of approaches and scales across host taxa. We began with questions related to within-host processes, focusing on the consequences of nutritional constraints and strenuous movement for individual immune capability, and of parasite infection for movement capacity. We then scaled-up to between-host processes to identify what types, distances, or patterns of host movements are associated with the spread of infectious agents. Finally, we discussed landscape-scale relationships between migration and infectious disease, and how these may be altered as a result of anthropogenic changes to climate and land use. We are just beginning to scratch the surface of the interactions between infection and animal migrations; yet, with so many migrations now under threat, there is an urgent need to develop a holistic understanding of the potential for migrations to both increase and reduce infection risk.


Subject(s)
Animal Migration , Communicable Diseases/veterinary , Animals , Communicable Diseases/transmission
2.
Integr Comp Biol ; 56(2): 278-89, 2016 08.
Article in English | MEDLINE | ID: mdl-27260859

ABSTRACT

Migratory animals undergo extreme physiological changes to prepare for and sustain energetically costly movements; one potential change is reduced investment in immune defenses. However, because some migrants have evolved to minimize the energetic demands of movement (for example, through the temporary atrophy of non-essential organs such as those involved in reproduction), migratory animals could potentially avoid immunosuppression during long-distance journeys. In this study, we used a tethered flight mill to examine immune consequences of experimentally induced powered flight in eastern North American monarch butterflies. These butterflies undergo an annual two-way long-distance migration each year from as far north as Canada to wintering sites in Central Mexico. We quantified immune measures as a function of categorical flight treatment (flown versus control groups) and continuous measures of flight effort (e.g., flight distance, duration, and measures of efficiency). We also examined whether relationships between flight and immune measures depended on reproductive investment by experimentally controlling whether monarchs were reproductive or in state of reproductive diapause (having atrophied reproductive organs) prior to flight. Of the three immune responses we measured, hemocyte concentration (the number of immune cells) was lower in flown monarchs relative to controls but increased with flight distance among flown monarchs; the other two immune measures showed no relationship to monarch flight. We also found that monarchs that were reproductively active were less efficient fliers, as they exerted more power during flight than monarchs in reproductive diapause. However, reproductive status did not modify relationships between flight and immune measures. Results of this study add to a growing body of work suggesting that migratory monarchs-like some other animals that travel vast distances-can complete their journeys with efficient use of resources and minimal costs.


Subject(s)
Animal Migration , Butterflies/physiology , Flight, Animal , Immunity, Innate , Animals , Butterflies/immunology , Female
SELECTION OF CITATIONS
SEARCH DETAIL
...