Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 23(17)2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37687788

ABSTRACT

This paper presents the development and application of an optical fiber-embedded tendon based on biomimetic multifunctional structures. The tendon was fabricated using a thermocure resin (polyurethane) and the three optical fibers with one fiber Bragg grating (FBG) inscribed in each fiber. The first step in the FBG-integrated artificial tendon analysis is the mechanical properties assessment through stress-strain curves, which indicated the customization of the proposed device, since it is possible to tailor the Young's modulus and strain limit of the tendon as a function of the integrated optical fibers, where the coated and uncoated fibers lead to differences in both parameters, i.e., strain limits and Young's modulus. Then, the artificial tendon integrated with FBG sensors undergoes three types of characterization, which assesses the influence of temperature, single-axis strain, and curvature. Results show similarities in the temperature responses in all analyzed FBGs, where the variations are related to the heterogeneity on the polyurethane matrix distribution. In contrast, the FBGs embedded in the tendon presented a reduction in the strain sensitivity when compared with the bare FBGs (i.e., without the integration in the artificial tendon). Such results demonstrated a reduction in the sensitivity as high as 77% when compared with the bare FBGs, which is related to strain field distributions in the FBGs when embedded in the tendon. In addition, the curvature tests indicated variations in both optical power and wavelength shift, where both parameters are used on the angle estimation using the proposed multifunctional artificial tendon. To that extent, root mean squared error of around 3.25° is obtained when both spectral features are considered. Therefore, the proposed approach indicates a suitable method for the development of smart structures in which the multifunctional capability of the device leads to the possibility of using not only as a structural element in tendon-driven actuators and devices, but also as a sensor element for the different structures.

2.
Motor Control ; 27(4): 880-896, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37633657

ABSTRACT

This study aimed to investigate the kinematic changes in obstacle avoidance and prehension tasks performed simultaneously by older adults with a history of falls at different levels of task difficulty. Twenty-six older adults were divided into faller and nonfaller groups. The experimental protocol was divided into two different tasks: walking with obstacle avoidance and walking with obstacle avoidance combined with a reach-to-grasp task. Two types of sensors (Kinect v2 and Leap Motion Controller, respectively) were used to analyze gait and grasp. Fallers presented kinematic changes associated with the grasping task during obstacle avoidance, such as a decrease in the velocity of the center of mass and the step length, an increase in the step width, a decrease in toe-obstacle horizontal distance, and an increase in vertical foot clearance distance, and an increase in movement time in the grasping task compared with nonfallers. To cope with the obstacle avoidance demands of both walking and grasping, fallers turned to a specific sequencing strategy. While slowing down, they attended first to the grasping task and then to crossing the obstacle on the floor.

3.
Biomed Opt Express ; 14(7): 3689-3704, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37497490

ABSTRACT

This paper presents the development of an optical fiber-integrated smart textile used as an instrumented pants for biomechanical and activity recognition. The optical fiber sensor is based on the multiplexed intensity variation technique in which a side coupling between a polymer optical fiber (POF) and light sources with controlled modulation is developed. In addition, the sensor system is integrated into pants, where two POFs with 30 sensors each are placed on the left and right legs of the proposed POF Smart Pants. After the device's fabrication and assembly, the 60 optical fiber sensors are characterized as a function of the transverse displacement on the sensor's region. In this case, each sensor presented its sensitivities (108.03 ± 100 mV/mm), which are used on the sensor normalization prior to the data analysis. Then, the tests with volunteer performing different daily activities indicated the suitability of the proposed device on the assessment of biomechanics of human movement in different activities as well as the spatio-temporal parameters of the gait in different velocity conditions. For activity recognition, a neural network is applied and presented 100% accuracy on the activity recognition. Then, to provide an optimization of the number of sensors, the principal components analysis is applied and indicated a threefold reduction of the number of sensors with an accuracy of 99%. Thus, the proposed POF Smart Pants is a feasible alternative for a low-cost and highly reliable sensor system for remote monitoring of different patients, with the possibility of customizing the device for different users.

4.
Sensors (Basel) ; 23(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36850458

ABSTRACT

This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) for the assessment of the natural frequencies and vibration modes of the beam for the dynamic analysis of the structural element. Furthermore, the static numerical analysis was performed using a load at the free end of the beam, where the maximum strain and its distribution along the beam were analyzed, especially in the region at which the FBG was positioned. The experimental evaluation of the proposed CFBG sensor was performed in static conditions for forces from 0 to 50 N (in 10 N steps) applied at the free end of the beam, whereas the dynamic evaluation was performed by means of positioning an unbalanced motor at the end of the beam, which was excited at 16 Hz, 65 Hz, 100 Hz, and 131 Hz. The results showed the feasibility of the proposed device for the simultaneous assessment of the force and strain distribution along the CFBG region using the wavelength shift and the full-width at half-maximum (FWHM), respectively. In these cases, the determination coefficients of the spectral features as a function of the force and strain distribution were higher than 0.99 in all analyzed cases, where a potential resolution of 0.25 N was obtained on the force assessment. In the dynamic tests, the frequency spectrum of the sensor responses indicated a frequency peak at the excited frequency in all analyzed cases. Therefore, the proposed sensor device is a suitable option to extend the performance of sensors for structural health assessment, since it is possible to simultaneously measure different parameters in dynamic and static conditions using only one sensor device, which, due to its multiplexing capabilities, can be integrated with additional optical fiber sensors for the complete shape reconstruction with millimeter-range spatial resolution.

5.
Polymers (Basel) ; 15(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36771940

ABSTRACT

This paper presents the development and sensor applications of 3D-printed polymer optical fibers (POFs) using commercially available filaments. The well-known intensity variation sensor was developed using this fiber for temperature and curvature sensing, where the results indicate a linear response in the curvature analysis, with a coefficient of determination (R2) of 0.97 and sensitivity of 4.407 × 10-4 mW/∘, whereas the temperature response was fitted to an R2 of 0.956 with a sensitivity of 5.718 × 10-3 mW/∘C. Then, the POF was used in the development of a modal interferometer by splicing the POF in-between two single-mode fibers (SMFs), which result in a single-mode-multimode-single-mode (SMS) configuration. The such interferometer was tested for temperature and axial strain responses, where the temperature response presented a linear trend R2 of around 0.98 with a sensitivity of -78.8 pm/∘C. The negative value of the sensitivity is related to the negative thermo-optic coefficient commonly obtained in POFs. Furthermore, the strain response of the SMS interferometer showed a high sensitivity (9.5 pm/µÏµ) with a quadratic behavior in which the R2 of around 0.99 was obtained. Therefore, the proposed approach is a low-cost, environmentally friendly and straightforward method for the production of highly sensitive optical fiber sensors.

6.
Sensors (Basel) ; 23(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36679789

ABSTRACT

This paper presents the development and application of a multiplexed intensity variation-based sensor system for multiplane shape reconstruction. The sensor is based on a polymer optical fiber (POF) with sequential lateral sections coupled with a flexible light-emitting diode (LED) belt. The optical source modulation enables the development of 30 independent sensors using one photodetector, where the sensor system is embedded in polydimethylsiloxane (PDMS) resin in two configurations. Configuration 1 is a continuous PDMS layer applied in the interface between the flexible LED belt and the POF, whereas Configuration 2 comprises a 20 mm length PDMS layer only on each lateral section and LED region. The finite element method (FEM) is employed for the strain distribution evaluation in different conditions, including the strain distribution on the sensor system subjected to momentums in roll, pitch and yaw conditions. The experimental results of pressure application at 30 regions for each configuration indicated a higher sensitivity of Configuration 1 (83.58 a.u./kPa) when compared with Configuration 2 (40.06 a.u./kPa). However, Configuration 2 presented the smallest cross-sensitivity between sequential sensors (0.94 a.u./kPa against 45.5 a.u./kPa of Configuration 1). Then, the possibility of real-time loading condition monitoring and shape reconstruction is evaluated using Configuration 1 subjected to momentums in roll, pitch and yaw, as well as mechanical waves applied on the sensor structure. The strain distribution on the sensor presented the same pattern as the one obtained in the simulations, and the real-time response of each sensor was obtained for each case. In addition, the possibility of real-time loading condition estimation is analyzed using the k-means algorithm (an unsupervised machine learning approach) for the clusterization of data regarding the loading condition. The comparison between the predicted results and the real ones shows a 90.55% success rate. Thus, the proposed sensor device is a feasible alternative for integrated sensing in movement analysis, structural health monitoring submitted to dynamic loading and robotics for the assessment of the robot structure.


Subject(s)
Optical Fibers , Robotics , Elastomers , Polymers , Dimethylpolysiloxanes/chemistry
7.
Biosensors (Basel) ; 12(11)2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36421159

ABSTRACT

This paper presents the development of an optical fiber sensor system for multiparametric assessment of temperature and turbidity in liquid samples. The sensors are based on the combination between fiber Bragg gratings (FBGs), intensity variation and surface plasmon resonance (SPR) sensors. In this case, the intensity variation sensors are capable of detecting turbidity with a resolution of about 0.5 NTU in a limited range between 0.02 NTU and 100 NTU. As the turbidity increases, a saturation trend in the sensor is observed. In contrast, the SPR-based sensor is capable of detecting refractive index (RI) variation. However, RI measurements in the turbidity calibrated samples indicate a significant variation on the RI only when the turbidity is higher than 100 NTU. Thus, the SPR-based sensor is used as a complementary approach for the dynamic range increase of the turbidity assessment, where a linearity and sensitivity of 98.6% and 313.5 nm/RIU, respectively, are obtained. Finally, the FBG sensor is used in the temperature assessment, an assessment which is not only used for water quality assessment, but also in temperature cross-sensitivity mitigation of the SPR sensor. Furthermore, this approach also leads to the possibility of indirect assessment of turbidity through the differences in the heat transfer rates due to the turbidity increase.


Subject(s)
Optical Fibers , Surface Plasmon Resonance , Temperature , Refractometry
8.
Polymers (Basel) ; 14(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36365491

ABSTRACT

This paper presents an analysis of the mechanical properties of different polymer optical fibers (POFs) at ultraviolet (UV) radiation conditions. Cyclic transparent optical polymer (CYTOP) and polymethyl methacrylate (PMMA) optical fibers are used in these analyses. In this case, the fiber samples are irradiated at the same wavelength, pulse time and energy conditions for different times, namely, 10 s, 1 min, 2 min and 3 min. The samples are tested in tensile tests and dynamic mechanical thermal analysis (DMTA) to infer the variation in the static and dynamic properties of such fibers as a function of the UV radiation condition. Furthermore, reference samples of each fiber (without UV radiation) are tested for comparison purposes. The results show a lower UV resistance of PMMA fibers, i.e., higher variation in the material features in static conditions (Young's modulus variation of 0.65 GPa). In addition, CYTOP fiber (material known for its high UV resistance related to its optical properties) also presented Young's modulus variation of around 0.38 GPa. The reason for this reduction in the moduli is related to possible localized annealing due to thermal effects when the fibers are subjected to UV radiation. The dynamic results also indicated a higher variation in the PMMA fibers storage modulus, which is around 30% higher than the variations in the CYTOP fibers when different radiation conditions are analyzed. However, CYTOP fibers show a smaller operational temperature range and higher variation in the storage modulus as a function of the temperature when compared with PMMA fibers. In contrast, PMMA fibers show higher variations in their material properties when subjected to oscillatory loads at different frequency conditions. Thus, the results obtained in this work can be used as guidelines for the influence of UV radiation in POFs not only for the material choice, but also on the limitations of UV radiation in the fabrication of the grating as well as in sensor applications at UV radiation conditions.

9.
Sensors (Basel) ; 22(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36081000

ABSTRACT

This paper presents the development, analysis and application of a fiber Bragg grating (FBG) array for two-dimensional (2D) shape reconstruction in a cantilever beam. The structural elements made of Pinus wood and Nylon 6.0 were numerically analyzed using the finite element method for the strain distribution when constant loading is applied at the free end of the beam. In addition, the temperature compensation method is proposed to decouple the temperature cross-sensitivity in the deflection analysis. In this case, the temperature sensitivities of all sensing elements of the 5-FBG array were obtained. An additional FBG was encapsulated in a silicone mold for increased sensitivity and positioned in the clamping point in which deflection was negligible. Temperature compensation was achieved considering the temperature measured by the silicone-embedded FBG (sensitivity of 27.78 pm/°C) and the sensitivity of all five FBGs of the deflection-sensing array (9.14 pm/°C ± 0.33 pm/°C). In the deflection experiments, the sensors presented a high linearity, in which a determination coefficient (R2) higher than 0.995 was obtained in all of the analyzed cases. Furthermore, the 2D shape construction using the proposed sensor approach resulted in the elastic line estimation for all analyzed beams, where the experimental results were in agreement with the theoretical and numerical analysis with a R2 higher than 0.99 in all of the analyzed cases. Therefore, the proposed sensor array is a feasible approach for real-time shape reconstruction of structural elements with the advantages related to the possibility of direct embedment in the measured structure.

10.
Sensors (Basel) ; 22(14)2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35891037

ABSTRACT

This paper presented the force and displacement analyses of a diaphragm-embedded fiber Bragg grating (FBG) sensor. In the first step, a numerical analysis (via finite element method) was performed considering linear elastic materials, where there is a linear variation on the strain in the optical fiber for both displacement and force (or pressure). In the second step, the experimental analysis was performed using two approaches: (i) controlling the displacement applied in the diaphragm-embedded FBG (while the force is also measured). (ii) Controlling the force applied in the sensor (also with the measurement of the displacement). Results showed reflected optical power variations and wavelength shift following the application of displacement and force. The sensitivities of both wavelength shift and optical power were different (and non-proportional) when displacement and force were compared. However, a higher correlation, determination coefficient (R2) of 0.998, was obtained in the analysis of the wavelength shift as a function of the displacement, which indicated that the strain transmission in the optical fiber is directly related to the strain in the diaphragm, whereas the force has an indirect relation with the strain and depends on the material features. Then, the possibility of simultaneous estimation of force and displacement was investigated, where the linear relation of both parameters (displacement and force) with the wavelength shift and the optical power were obtained in a limited range of displacement and force. In this range, root mean squared errors of 0.37 N and 0.05 mm were obtained for force and displacement, respectively. In addition, the force variation with a step displacement input also shows the possibility of using the proposed FBG device for the characterization of the materials' viscoelastic features such as phase delay, creep, and stress relaxation, which can be employed for in situ characterization of different viscoelastic materials.

11.
Sensors (Basel) ; 22(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35746185

ABSTRACT

Sensing technologies using optical fibers have been studied and applied since the 1970s in oil and gas, industrial, medical, aerospace, and civil areas. Detecting ultrasound acoustic waves through fiber-optic hydrophone (FOH) sensors can be one solution for continuous measurement of volumes inside production tanks used by these industries. This work presents an FOH system composed of two optical fiber coils made with commercial single mode fiber (SMF) working in the sensor head of a Michelson's interferometer (MI) supported by an active stabilization mechanism that drives another optical coil wound around a piezoelectric actuator (PZT) in the reference arm to mitigate external mechanical and thermal noise from the environment. A 1000 mL glass graduated cylinder filled with water is used as a test tank, inside which the sensor head and an ultrasound source are placed. For detection, amplitudes and phases are measured, and machine learning algorithms predict their respective liquid volumes. The acoustic waves create patterns electronically detected with resolution of 1 mL and sensitivity of 340 mrad/mL and 70 mvolts/mL. The nonlinear behavior of both measurands requires classification, distance metrics, and regression algorithms to define an adequate model. The results show the system can determine liquid volumes with an accuracy of 99.4% using a k-nearest neighbors (k-NN) classification with one neighbor and Manhattan's distance. Moreover, Gaussian process regression using rational quadratic metrics presented a root mean squared error (RMSE) of 0.211 mL.


Subject(s)
Fiber Optic Technology , Optical Fibers , Algorithms
12.
Sci Rep ; 12(1): 4067, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35260746

ABSTRACT

Smart textiles are novel solutions for remote healthcare monitoring which involve non-invasive sensors-integrated clothing. Polymer optical fiber (POF) sensors have attractive features for smart textile technology, and combined with Artificial Intelligence (AI) algorithms increase the potential of intelligent decision-making. This paper presents the development of a fully portable photonic smart garment with 30 multiplexed POF sensors combined with AI algorithms to evaluate the system ability on the activity classification of multiple subjects. Six daily activities are evaluated: standing, sitting, squatting, up-and-down arms, walking and running. A k-nearest neighbors classifier is employed and results from 10 trials of all volunteers presented an accuracy of 94.00 (0.14)%. To achieve an optimal amount of sensors, the principal component analysis is used for one volunteer and results showed an accuracy of 98.14 (0.31)% using 10 sensors, 1.82% lower than using 30 sensors. Cadence and breathing rate were estimated and compared to the data from an inertial measurement unit located on the garment back and the highest error was 2.22%. Shoulder flexion/extension was also evaluated. The proposed approach presented feasibility for activity recognition and movement-related parameters extraction, leading to a system fully optimized, including the number of sensors and wireless communication, for Healthcare 4.0.


Subject(s)
Artificial Intelligence , Walking , Clothing , Humans , Movement , Textiles
13.
Sensors (Basel) ; 21(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34883847

ABSTRACT

Shape reconstruction is growing as an important real-time monitoring strategy for applications that require rigorous control. Polymer optical fiber sensors (POF) have mechanical properties that allow the measurement of large curvatures, making them appropriate for shape sensing. They are also lightweight, compact and chemically stable, meaning they are easy to install and safer in risky environments. This paper presents a sensor system to detect angles in multiple planes using a POF-intensity-variation-based sensor and a procedure to detect the angular position in different planes. Simulations are performed to demonstrate the correlation between the sensor's mechanical bending response and their optical response. Cyclic flexion experiments are performed at three test frequencies to obtain the sensitivities and the calibration curves of the sensor at different angular positions of the lateral section. A Fast Fourier Transform (FFT) analysis is tested as a method to estimate angular velocities using POF sensors. The experimental results show that the prototype had high repeatability since its sensitivity was similar using different test frequencies at the same lateral section position. The proposed approach proved itself feasible considering that all linear calibration curves presented a coefficient of determination (R2) higher than 0.9.


Subject(s)
Optical Fibers , Polymers , Calibration
14.
Sensors (Basel) ; 21(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960466

ABSTRACT

This work presents an extensive, comparative study of the gamma and electron radiation effects on the behaviour of femtosecond laser-inscribed fibre Bragg gratings (FBGs) using the point-by-point and plane-by-plane inscription methods. The FBGs were inscribed in standard telecommunication single mode silica fibre (SMF28) and exposed to a total accumulated radiation dose of 15 kGy for both gamma and electron radiation. The gratings' spectra were measured and analysed before and after the exposure to radiation, with complementary material characterisation using Fourier transform infrared (FTIR) spectroscopy. Changes in the response of the FBGs' temperature coefficients were analysed on exposure to the different types of radiation, and we consider which of the two inscription methods result in gratings that are more robust in such harsh environments. Moreover, we used the FTIR spectroscopy to locate which chemical bonds are responsible for the changes on temperature coefficients and which are related with the optical characteristics of the FBGs.


Subject(s)
Lasers
15.
Sensors (Basel) ; 21(17)2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34502717

ABSTRACT

Optical fiber sensors based on fiber Bragg gratings (FBGs) are prone to measurement errors if the cross-sensitivity between temperature and strain is not properly considered. This paper describes a self-compensated technique for canceling the undesired influence of temperature in strain measurement. An edge-filter-based interrogator is proposed and the central peaks of two FBGs (sensor and reference) are matched with the positive and negative slopes of a Fabry-Perot interferometer that acts as an optical filter. A tuning process performed by the grey wolf optimizer (GWO) algorithm is required to determine the optimal spectral characteristics of each FBG. The interrogation range is not compromised by the proposed technique, being determined by the spectral characteristics of the optical filter in accordance with the traditional edge-filtering interrogation. Simulations show that, by employing FBGs with optimal characteristics, temperature variations of 30 °C led to an average relative error of 3.4% for strain measurements up to 700µÏµ. The proposed technique was experimentally tested under non-ideal conditions: two FBGs with spectral characteristics different from the optimized results were used. The temperature sensibility decreased by 50.8% as compared to a temperature uncompensated interrogation system based on an edge filter. The non-ideal experimental conditions were simulated and the maximum error between theoretical and experimental data was 5.79%, proving that the results from simulation and experimentation are compatible.

16.
Opt Lett ; 45(18): 5057-5060, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32932452

ABSTRACT

This Letter presents the development of a low-cost polymer optical fiber (POF) sensor for mechanical wave monitoring. The POF is fabricated using the light polymerization spinning process (LPS-POF) with Bisphenol-A as its main component, resulting in a highly flexible fiber. The proposed LPS-POF sensor is applied on the assessment of squared waves with different amplitudes, where the amplitude and dynamic responses are compared to the ones of a piezoelectric transducer (PZT). In static conditions, a determination coefficient (R2) of 0.990 is obtained between the reference (PZT) and proposed sensors for the amplitude assessment of the wave. In dynamic analysis, the LPS-POF viscoelasticity is compensated using viscoelastic constitutive models, resulting in a R2 of 0.988 between the sensor responses, which indicate a mean error reduction of 21% when compared to the uncompensated responses in the amplitudes of different square waves. The dynamic analysis also shows the sensor capability of operating in frequencies as high as 25 Hz. Then, the sensor's responses, compared to the input squared wave, show the possibility of wave velocity measurement. Therefore, with a LPS-POF sensor array, it is possible to monitor these parameters in practical applications.

17.
Sci Rep ; 10(1): 13867, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32807827

ABSTRACT

This paper presents the development and application of a multiparameter, quasi-distributed smart textile based on embedded highly stretchable polymer optical fiber (POF) sensors. The POF is fabricated using the light polymerization spinning process, resulting a highly stretchable optical fiber, so-called LPS-POF, with Young's modulus and elastic limits of 15 MPa and 17%, respectively. The differential scanning calorimetry shows a thermal stability of the LPS-POF in temperature range of 13-40 °C. The developed sensors are based on the optical power variation, which results in a fully portable and low-cost technique. In order to obtain a multiplexed sensor system, a technique based on flexible light emitting diodes (LEDs) on-off keying modulation is applied, where each LED represents the response of one sensor. The smart textile comprises of LPS-POF and three flexible LEDs embedded in neoprene textile fabric. The performance of the system is evaluated for temperature, transverse force and angular displacement detection at different planes. The sensors presented high linearity (mean determination coefficient of 0.99) and high repeatability (inter-measurement deviations below 5%). The sensor is also applied in activity detection, where the principal component analysis (PCA) was applied in the sensors responses and, in conjunction with clustering techniques such as k-means, indicate the possibility of detecting basic activities such as walking, sitting on a chair and squatting.

18.
Sensors (Basel) ; 20(11)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512903

ABSTRACT

Advances in robotic systems for rehabilitation purposes have led to the development of specialized robot-assisted rehabilitation clinics. In addition, advantageous features of polymer optical fiber (POF) sensors such as light weight, multiplexing capabilities, electromagnetic field immunity and flexibility have resulted in the widespread use of POF sensors in many areas. Considering this background, this paper presents an integrated POF intensity variation-based sensor system for the instrumentation of different devices. We consider different scenarios for physical rehabilitation, resembling a clinic for robot-assisted rehabilitation. Thus, a multiplexing technique for POF intensity variation-based sensors was applied in which an orthosis for flexion/extension movement, a modular exoskeleton for gait assistance and a treadmill were instrumented with POF angle and force sensors, where all the sensors were integrated in the same POF system. In addition, wearable sensors for gait analysis and physiological parameter monitoring were also proposed and applied in gait exercises. The results show the feasibility of the sensors and methods proposed, where, after the characterization of each sensor, the system was implemented with three volunteers: one for the orthosis on the flexion/extension movements, one for the exoskeleton for gait assistance and the other for the free gait analysis using the proposed wearable POF sensors. To the authors' best knowledge, this is the first time that optical fiber sensors have been used as a multiplexed and integrated solution for the simultaneous assessment of different robotic devices and rehabilitation protocols, where such an approach results in a compact, fully integrated and low-cost system, which can be readily employed in any clinical environment.


Subject(s)
Exoskeleton Device , Optical Fibers , Rehabilitation/instrumentation , Robotics , Gait , Humans , Polymers
19.
Med Eng Phys ; 80: 18-25, 2020 06.
Article in English | MEDLINE | ID: mdl-32446757

ABSTRACT

Robotic assistive devices are able to enhance physical stability and balance. Smart walkers, in particular, are also capable of offering cognitive support for individuals whom conventional walkers are unsuitable. However, visually impaired individuals often need additional sensorial assistance from those devices. This work proposes a smart walker with an admittance controller for guiding visually impaired individuals along a desired path. The controller uses as inputs the physical interaction between the user and the walker to provide haptic feedback hinting the path to be followed. Such controller is validated in a set of experiments with healthy individuals. At first, users were blindfolded during navigation to assess the capacity of the smart walker in providing guidance without visual input. Then, the blindfold is removed and the focus is on evaluating the human-robot interaction when the user had visual information during navigation. The results indicate that the admittance controller design and the design of the guidance path were factors impacting on the level of comfort reported by users. In addition, when the user was blindfolded, the linear velocity assumed lower values than when did not wear it, from a mean value of 0.19 m/s to 0.21 m/s.


Subject(s)
Self-Help Devices , Feedback , Humans , Locomotion , Walkers , Walking
20.
Sensors (Basel) ; 20(11)2020 May 27.
Article in English | MEDLINE | ID: mdl-32471041

ABSTRACT

We report the development and characterizations of a fiber Bragg grating (FBG) sensor coated with different ultraviolet (UV) curable resins. The UV-curable resins were applied on the fiber after the FBG inscription and cured with an UV lamp. One set of samples used the NOA 68 resin and the other used NOA 88. The samples were characterized with respect to the temperature, moisture absorption and strain response. Furthermore, in order to understand the influence of the resin coating on the optical fiber's mechanical properties, tensile tests were performed with the samples. Results show that all samples presented negligible sensitivity to moisture absorption in the 50-min long tests with the fibers immersed in a container filled with distillated water. Regarding the temperature responses, the coated FBGs presented higher sensitivity (13.84 pm/°C for NOA 88 and 12.76 pm/°C for NOA 68) than the uncoated FBGs due to the thermal expansion of the coatings. In the strain tests, all coated and uncoated samples presented similar sensitivities, but with a larger strain range applied for the coated samples (strains higher than 5500 µÎµ) when compared with the uncoated samples (3500 µÎµ). Moreover, the stress-strain curves of the coated samples indicated a Young's modulus one order with magnitude lower than the one of the uncoated silica fiber, where the lowest Young's modulus is 3.84 GPa and was obtained with the NOA 68 coating, which indicates the possibility of obtaining highly sensitive pressure and force sensors.

SELECTION OF CITATIONS
SEARCH DETAIL
...