Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 61(21): 8117-8120, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35584531

ABSTRACT

Herein we present two new ferrocene compounds Fc3 and Fc4 with, respectively, propyl and butyl zwitterionic side chains. These compounds are highly soluble in water (0.66 M for Fc3 and 2.01 M for Fc4). When paired with anthraquinone-2,7-disulfonate as the anolyte, these zwitterionic ferrocenes exhibit excellent performance under neutral aqueous conditions. Voltage and energy efficiencies were ca. 88%, and the Coulombic efficiency was over 99% for both high-concentration redox flow batteries. We observed a difference in stability between the lengths of the zwitterionic chains, with Fc4 showing higher stability than Fc3, and the capacity decreased by ∼5% at the end of 20 cycles (∼1% per day). Density functional theory calculations revealed striking differences in the conformational properties between Fc3 and Fc4, with Fc4 retaining a linear structure of the side chain in solution, while Fc3 favored both linear and curved geometries.

2.
Inorg Chem ; 60(14): 10764-10771, 2021 Jul 19.
Article in English | MEDLINE | ID: mdl-34210136

ABSTRACT

Redox flow batteries (RFBs) are scalable devices that employ solution-based redox active components for scalable energy storage. To maximize energy density, new highly soluble catholytes and anolytes need to be synthesized and evaluated for their electrochemical performance. To that end, we synthesized a series of imidazolium ferrocene bis(sulfonate) salts as highly soluble catholytes for RFB applications. Six salts with differing alkyl chain lengths on the imidazolium cation were synthesized, characterized, and electrochemically analyzed. While aqueous solubility was significantly improved, the reactivity of the imidazolium cation and the increased viscosities of the salt solutions in water (which increase with increasing imidazolium chain length) limit the applicability of these materials to RFB design.

3.
Anal Chem ; 92(13): 8852-8858, 2020 07 07.
Article in English | MEDLINE | ID: mdl-32489102

ABSTRACT

A promising strategy to lowering detection limits in electrochemical analysis is the active modulation of the electrode temperature. Specifically, by tuning the electrode's surface temperature one can enhance detection limits due to improved electrode process kinetics and increased mass transfer rates, all without affecting the bulk solution. Motivated by this argument, here we report the development of a new electroanalytical technique based on electrode-temperature modulation, which we call hot square wave voltammetry (Hot-SWV). The technique utilizes the superposition of conventional SWV, already considered as one of the most sensitive voltammetric techniques, and a high frequency alternating current (ac) waveform to electrically polarize microelectrodes. By applying about 100 MHz ac frequencies (with varying Vrms amplitudes), our method generates an electrothermal fluid flow (ETF) in the electrolyte surrounding the electrode, thereby increasing the sensitivity of the SWV-based detection. We demonstrate this by investigating the oxidation of ferrocyanide and iron(II) ions, as well as the reduction of the coordination compound ruthenium(III) hexamine under various experimental conditions. We validate our experimental results against a theoretical model built using finite element analysis and observe agreement within ≤15% error at temperatures ≤39 °C. Using Hot-SWV, we observe at least one-order-of-magnitude improvement in the limit of detection of ferrocyanide ions relative to conventional, mm-size electrodes at 25 °C. In addition, we anticipate that Hot-SWV will be particularly useful for electroanalytical measurements of ultralow (≤pM) concentrations of analytes in environmental and biomedical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...