Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Publication year range
1.
J Intern Med ; 287(3): 263-270, 2020 03.
Article in English | MEDLINE | ID: mdl-31595572

ABSTRACT

Sedentary lifestyle accelerates biological ageing, is a major risk factor for developing metabolic syndrome and is associated with cardiovascular disease, diabetes mellitus, kidney failure, sarcopenia and osteoporosis. In contrast to the linear path to worsening health in humans with metabolic syndrome, brown bears have developed a circular metabolic plasticity enabling these animals to tolerate obesity and a 'sedentary lifestyle' during hibernation and exit the den metabolically healthy in spring. Bears are close to humans physiology wise, much closer than rodents, the preferred experimental animals in medical research, and may better serve as translational model to develop treatments for lifestyle-related diseases. In this review, aspects of brown bear hibernation survival strategies are outlined and conceivable experimental strategies to learn from bears are described.


Subject(s)
Aging/physiology , Chronic Disease/prevention & control , Energy Metabolism/physiology , Hibernation/physiology , Sedentary Behavior , Ursidae , Animals , Humans , Translational Research, Biomedical
2.
Exp Physiol ; 103(1): 1-8, 2018 01 01.
Article in English | MEDLINE | ID: mdl-29094480

ABSTRACT

NEW FINDINGS: What is the central question of this study? Although peripheral blood haematopoietic stem and progenitor cells are potentially important in regeneration after acute myocardial infarction, their self-renewal ability in the post-acute phase has not yet been addressed. What is the main finding and its importance? In rat peripheral blood, we show that myocardial infarction does not negatively affect circulating haematopoietic stem and progenitor cell self-renewal ability 2 weeks after acute infarction, which suggests a constant regenerative potential in the myocardial infarction post-acute phase. Given the importance of peripheral blood haematopoietic stem and progenitor cells (HPCs) in post-acute regeneration after acute myocardial infarction (MI), the aim of the present study was to investigate the number and secondary replating capacity/self-renewal ability of HPCs in peripheral blood before and 2 weeks after MI. In female Lewis inbred rats (n = 9), MI was induced by ligation of the left coronary artery, and another nine underwent sham surgery, without ligation, for control purposes. Myocardial infarction was confirmed by troponin I concentrations 24 h after surgery. Peripheral blood was withdrawn and fractional shortening and ejection fraction of the left ventricle were assessed before (day 0) and 14 days after MI or sham surgery (day 14). After mononuclear cell isolation, primary and secondary functional colony-forming unit granulocyte-macrophage (CFU-GM) assays were performed in order to detect the kinetics of functional HPC colony counts and cell self-renewal ability in vitro. The CFU-GM counts and cell self-renewal ability remained unchanged (P > 0.05) in both groups at day 14, without interaction between groups. In the intervention group, higher day 0 CFU-GM counts showed a relationship to lower fractional shortening on day 14 (ρ = -0.82; P < 0.01). Myocardial infarction did not negatively affect circulating HPC self-renewal ability, which suggests a constant regenerative potential in the post-acute phase. A relationship of cardiac contractile function 14 days after MI with circulating CFU-GM counts on day 0 might imply functional colony count as a predictive factor for outcome after infarction.


Subject(s)
Cell Self Renewal/physiology , Disease Models, Animal , Hematopoietic Stem Cells/physiology , Myocardial Infarction/blood , Myocardial Infarction/physiopathology , Animals , Cell Separation/methods , Female , Rats , Rats, Inbred Lew
3.
Acta Biomater ; 10(7): 2996-3006, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24531014

ABSTRACT

Cardiac tissue engineering approaches can deliver large numbers of cells to the damaged myocardium and have thus increasingly been considered as a possible curative treatment to counteract the high prevalence of progressive heart failure after myocardial infarction (MI). Optimal scaffold architecture and mechanical and chemical properties, as well as immune- and bio-compatibility, need to be addressed. We demonstrated that radio-frequency plasma surface functionalized electrospun poly(ɛ-caprolactone) (PCL) fibres provide a suitable matrix for bone-marrow-derived mesenchymal stem cell (MSC) cardiac implantation. Using a rat model of chronic MI, we showed that MSC-seeded plasma-coated PCL grafts stabilized cardiac function and attenuated dilatation. Significant relative decreases of 13% of the ejection fraction (EF) and 15% of the fractional shortening (FS) were observed in sham treated animals; respective decreases of 20% and 25% were measured 4 weeks after acellular patch implantation, whereas a steadied function was observed 4 weeks after MSC-patch implantation (relative decreases of 6% for both EF and FS).


Subject(s)
Heart Function Tests , Tissue Engineering , Animals , Disease Models, Animal , Male , Myocardial Infarction/complications , Myocardial Infarction/physiopathology , Rats , Rats, Inbred Lew , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...