Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 25(49): 11481-11485, 2019 Sep 02.
Article in English | MEDLINE | ID: mdl-31206813

ABSTRACT

N-Heterocyclic carbene (NHC)-stabilized copper nanoparticles (NPs) were synthesized from an NHC-borane adduct and mesitylcopper(I) under thermal conditions (refluxing toluene for 2.5 h). NPs with a size distribution of 11.6±1.8 nm were obtained. The interaction between Cu NPs and NHC ligands was probed by X-ray photoelectron spectroscopy, which showed covalent binding of the NHC to the surface of the NPs. Mechanistic studies suggested that NHC-borane plays two roles: contributing to the reduction of [CuMes]2 to release Cu0 species and providing NHC ligands to stabilize the copper NPs.

2.
Angew Chem Int Ed Engl ; 56(20): 5616-5619, 2017 05 08.
Article in English | MEDLINE | ID: mdl-28402020

ABSTRACT

The conversion of SO2 into arylsulfones under metal-free conditions was achieved for the first time by reacting SO2 with (hetero)arylsilanes and alkylhalides in the presence of a fluoride source. The mechanism of this transformation was elucidated based on DFT calculations, which highlight the influence of SO2 in promoting C-Si bond cleavage.

3.
Chemistry ; 22(9): 2930-4, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26712565

ABSTRACT

A one-step conversion of CO2 into heteroaromatic esters is presented under metal-free conditions. Using fluoride anions as promoters for the C-Si bond activation, pyridyl, furanyl, and thienyl organosilanes are successfully carboxylated with CO2 in the presence of an electrophile. The mechanism of this unprecedented reaction has been elucidated based on experimental and computational results, which show a unique catalytic influence of CO2 in the C-Si bond activation of pyridylsilanes. The methodology is applied to 18 different esters, and it has enabled the incorporation of CO2 into a polyester material for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...